Abstract:
A loudspeaker arrangement comprises an acoustic enclosure (101) which is divided into at least two subchambers (103, 105). An audio radiator (109) is mounted in a first subchamber (103) of the at least two subchambers (103, 105) such that it radiates outwardly of the acoustic enclosure (101). A port (107) is included for pneumatically connecting the first subchamber (103) and the second subchamber (105). The system is designed such that a Helmholtz frequency of the first subchamber (103) and the port (107) is at least five times higher than a resonance frequency of the audio radiator (109). The loudspeaker arrangement may provide an improved trade-off between sound pressure levels, audio quality and size and may in particular provide improved low frequency performance without introducing disadvantages typically associated with conventional ported speaker and passive radiator designs.
Abstract:
Currently there is no easy way to tell people that they need to take a break and relax, eat or sleep better. A system (100) is described that provides a human low battery warning that indicates to the user in a very simple way that he should change his behavior by sleeping more, eating better or relaxing more to prevent the user from being over-stressed or getting a burnout. This simple warning can help people to take a break when they need it and to make sure that their human battery does not get empty.
Abstract:
Method to adjust a hearing aid device, the method comprising: -generating one or more acoustic signals (S2) to induce otoacoustic emissions (OAE) in an inner ear (UIE) of a user of the device (1; 101; 201); -measuring the otoacoustic emissions (OAE); and -adjusting the hearing air device (1; 101; 201) based on a result from the measurement of the otoacoustic emissions (OAE), wherein the inducing and/or measuring of the otoacoustic emissions is at least partly carried out by the hearing aid device (1; 101; 201).
Abstract:
A pulsating fluid cooling device comprising a transducer (1) for generating a pulsating fluid flow and a fluid guiding structure (3) for directing the pulsating flow towards an object (4) to be cooled. The device further comprises a sensor (7) for detecting at least one variable external to the transducer, a feedback path (6) for providing a feedback signal 5 indicative of this variable, and control circuitry (5) arranged to receive the feedback signal and generate a frequency control signal based on said feedback, for controlling a working frequency o f the transducer. By providing the control circuitry wit h informat ion about the conditions at the object, the frequency can be controlled based on actual performance. The performance can be 10 optimized in terms of the measured variable. For example, if the feedback signal includes informat ion about the temperature change of the object, the control circuitry can be arranged to select a working frequency that results in optimal cooling.
Abstract:
A cooling device using pulsating fluid for cooling of an object (8), comprising a transducer (2) adapted to generate pressure waves at a drive frequency, a tube (3), having a first end adapted to receive said pressure waves from the transducer, and a second end (7) adapted to generate a pulsating net output flow towards the object (8). Compared to a Helmholtz resonator, where the length of the tube is short compared to the wavelength, the length (L) of the tube according to the present invention is greater than ?/10, which has been found to be sufficiently long to avoid Helmholtz resonance. Instead, the tube acts as a transmission line, that applies a velocity gain to the pulsating flow.
Abstract:
The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound source for producing an attenuating sound to be superposed with the sound emitted by said primary sound source, a reference microphone for receiving sound from said primary sound source, and at least one error microphone being allocated to each speaker to form a speaker/microphone pair. The at least one error microphone is provided as a directional microphone pointing at its allocated speaker to receive residual sound resulting from the superposition of the sounds from the primary sound source and the corresponding speaker. The error microphone and speaker of at least one speaker/microphone pair and the primary sound source are arranged substantially collinear. A control unit is provided to receive an output reference signal of the reference microphone representing the sound received by the reference microphone and an output error signal of the at least one error microphone representing the sound received by the at least one error microphone and to calculate a control signal for the speaker from the output reference signal and the output error signal.
Abstract:
The audio reproduction apparatus comprises a cost input for inputting a mathematical cost derived from a measurement, which measurement is user-influenceable and a conditioning unit, capable of delivering an output audio signal in dependence of the mathematical cost, characterized in that the conditioning unit comprises an audio processing means arranged to process an input audio signal to derive the output audio signal with a reproduction quality in dependence of the mathematical cost. As a reproduction quality the position of a virtual sound source and the quality of a stereo signal are also possible. A system comprising the audio reproduction apparatus, a measurement device and a sound production device and a method of to deriving the output audio signal with a reproduction quality in dependence of the mathematical cost are also presented.
Abstract:
The present invention relates to a method and a media system of/for generation of at least one output signal (HPL, HPR) from at least one input signal from a second set of sound signals (M) having a related second set of Head Related Transfer Functions. The media system can be a TV, a CD player, a DVD player, a Radio, a display, an amplifier, a headphone or a VCR. Said method includes the steps of determining, for each signal in the second set of sound signals, a weighted relation (14) comprising at least one signal from a third set of intermediate sound signals (CHI1, CHI2) and at least one weight value (Weights); determining a first set of Head Related Transfer Functions (HRTFs) based on the second set of sound signals, the second set of Head Related Transfer Functions and the weighted relation; and transferring at least one signal from the third set of intermediate sound signals by means of at least one HRTF from said first set of Head Related Transfer Functions in order to generate at least one output signal belonging to said first set of sound signals. Hereby, in the end, fewer HRTFs are determined for a subsequent transfer of input signal(s) to output signal(s). Accordingly few convolutions are required.
Abstract:
The invention relates to a system (10) and method for influencing a photobiological state in a vertebrate (5). The system comprises a light source (30, 32) for emitting light which influences the photobiological state, a sensor (20, 22) arranged to sense a first biophysical parameter (Pl), and a control circuit (12) for controlling the light source (30, 32) so as to generate a predetermined photobiological state. The biophysical parameter represents a biological state of the vertebrate (5). The control circuit (12) receives a feedback signal (S1, S2) from the sensor (20, 22) and subsequently sends a control signal (16, 17, 18, S3) to the light source (30, 32) for controlling the light source (30, 32). The control signal is generated by combining a second parameter with the first biophysical parameter. The second parameter is a second biophysical parameter or an interaction parameter characterizing an interaction of the vertebrate with a device. The second parameter represents a further biological state of the vertebrate. The second biophysical parameter is sensed, for example, at a different time and/or is a different biophysical parameter as compared to the first biophysical parameter.
Abstract:
A stressor detection system (100) comprises sensor means (101) arranged for being attached to a person for obtaining a time-varying signal representing a physical quantity relating to an environment of the person, and processing means (102) for deriving a stressor value from the obtained signal representing a degree to which the environment is inducing stress in the person. The processing means is arranged for deriving an amount of complexity comprised in the signal, and for deriving a higher stressor value for a larger amount of information. The processing means is further arranged for performing a spectral frequency analysis of the signal and for deriving the stressor value also in dependence on the spectral frequency analysis. The sensor means comprises a microphone (105), a camera (104), and a tri-axial accelerometer.