Abstract:
The invention relates to a respiratory motion detection apparatus (1) for detecting respiratory motion of a person. An illuminator (3) illuminates the person (2) with an illumination pattern (11), and a detector (4) detects the illumination pattern (11) on the person (2) over time. A temporal respiratory motion signal being indicative of the respiratory motion of the person (2) is determined from the detected illumination pattern by a respiratory motion signal determination unit (5). The illumination pattern deforms significantly with slight movements of the person. Thus, since the respiratory motion signal determination unit (5) is adapted to determine the temporal respiratory motion signal from the detected illumination pattern, even slight respiratory movements of the person can be determined. The sensitivity of detecting respiratory movements of a person can therefore be improved.
Abstract:
A system and method that measures an optical focus of a distant optical imaging system (EYE), in particular the ocular accommodation of a distant human subject. A luminous pattern of light (P1, A1) is projected by a projector (P) in focus (A2) at a known focal plane (FPL1) in front of the distant optical imaging system (EYE), and an image of the reflection of the pattern (A3) on a sensor surface of the distant optical imaging system (EYE), for instance the retina of an eye, is recorded by a camera (CAM) having an optical axis (AXCAM) coinciding at least partly with or situated close to the optical axis (AXP) of the projection device (P). The sharpness of the luminous pattern (A3) reflected from the sensor surface (retina) is determined.
Abstract:
There is disclosed a sensing device (100) adapted to receive light emitted from a plurality of light sources (A, B), each of the plurality of light sources (A, B) emitting light comprising a light source identifier. The sensing device (100) comprises a sensing module(110) comprising a light selection unit (114) configured to receive at least a portion of the light emitted from the plurality of light sources (A, B) and a light selection unit (114) configured to receive at least a portion of the light emitted from the plurality of light sources (A, B). The light selection unit (114) is adapted to selectively convey a selected portion of light received by the light selection unit (114) to a second photo sensor unit (116). The light selection unit (114) is arranged relatively to the first photo sensor unit (112), or vice versa, in such a way that the selected portion of light is associated with a photo sensor of a plurality of photo sensors of the first photo sensor unit (114) detecting light.
Abstract:
The invention relates to a detection system for determining data embedded into the light output of a light source in a form of a repeating sequence of N symbols. The detection system includes a camera and a processing unit. The camera is configured to acquire a series of images of the scene via specific open/closure patterns of the shutter. The processing unit is configured to process the acquired series of images to determine the repeating sequence of N symbols. By carefully triggering when a shutter of the camera is open to capture the different symbols of the encoded light within each frame time of a camera, a conventional camera with a relatively long frame time may be employed. Therefore, the techniques presented herein are suitable for detecting the invisible "high frequency" coded light while using less expensive cameras as those used in the prior art.
Abstract:
A system for determining a distance to an object comprises an image capture device (101) which has a coded aperture and an image sensor which is positioned out of a focus plane of the coded aperture. A receiver (103) receives an image of a scene from the image sensor and a detector (105) detects at least two image objects of the image corresponding to ghost images of the object resulting from different openings of the coded aperture in response to an optical characteristic of the object. A distance estimator (107) then determines a distance to the object in response to a displacement in the image of the at least two image objects. The distance may be to a person and the image may be a bright pupil image wherein pupils are enhanced by reflection of light by the retina. The image may be compensated by a dark pupil image of the scene.
Abstract:
A device (500) and method for rendering content that includes analyzing previous and/or subsequent temporal portions of a content signal to determine elements that are positionally related to elements of a current portion of the content signal. The current portion of the content signal is rendered on a primary rendering device (530), such as a television, while the elements that are positionally related to elements of a current portion of the content signal are concurrently rendered on a secondary rendering device (540). In one embodiment, the elements that are rendered on the secondary rendering device (540) may be rendered at a lower resolution and/or lower frame rate than the rendered current portion of the content signal. In one embodiment, at least one of previous and subsequent temporal portions of a content signal may be analyzed at a lower resolution than the content signal.
Abstract:
A display device (40) comprising: a display panel (41) comprising a set of pixels (41R, 41L) the pixels being spatially distributed over the display panel, and each pixel being for providing a light output, the set of pixels comprising a plurality of different subsets (411) of pixels, each subset of pixels comprising one or more pixels of the set of pixels, an imaging unit (42) arranged for imaging the one or more pixels of a subset of pixels to form pixel images on a plurality of view areas on an imaginary plane located at a first distance in front of the display, the plurality of view areas not overlapping each other, with at least one pixel image of each one of the different subsets of pixels overlapping on a same one of the plurality of view areas, the imaginary plane comprising an imaginary circle having the diameter of the pupil of an eye, and the imaginary circle enclosing at least a part of at least two of the plurality of view areas, where the at least two of the plurality of view areas at least partly enclosed within the imaginary circle differ from each other with respect to at least one of the pixel images therein. The display system may be for one eye only or for two eyes of a viewer or for more eyes of more viewers.
Abstract:
A camera and camera system is provided with an optical device (8). The optical device creates simultaneously two or more images of object on a sensor (4) forming a compound image. The distance d between the constituting images of objects in the compound image is dependent on the distance Z to the camera. The compound image is analysed (9), e.g. deconvolved to determine the distances d between the double images. These distances are then converted into a depth map (10).
Abstract:
The invention relates to a method for encoding/decoding a video stream including a plurality of images (A, B, C) in a video processing apparatus having a processing unit (11) coupled to a first memory (12) , further comprising a second memory (13) , comprising the steps: providing a subset of image data stored in the second memory (13) in the first memory (12) ,- simultaneous encoding/decoding of more than one image (B, C) of the video stream, by accessing said subset, wherein the simultaneously encoding/decoding is performed by access sharing to at least one image (A) . For reducing the traffic or the number of access to second memory (13) an apparatus is proposed including: a processing unit (11) for performing an encoding/ decoding process of video data; a first memory (12) coupled to the processing unit (11) for storing image data required for encoding /decoding of video data,- a second memory (13) , wherein the video stream includes a plurality of images (A, B, C) ; the first memory (11) is adapted to store a subset of image data of the second memory (13) in the first memory (12) and the processing unit (11) is adapted to simultaneously encode/decode more than one image (B, C) of the video stream by accessing said subset of image data in the first memory (12) , wherein the simultaneously encoding/decoding is performed by sharing access to at least one image .