Abstract:
A light data communication link device (50) for use in a magnetic resonance examination system (10) comprises a first light emitter and receiver unit (52) and a second light emitter and receiver unit (76). A light generating member (54), a first optical waveguide (62) and a light diffuser (58) of the first light emitter and receiver unit (52), a distance in space between the light diffuser (58) and a converging lens (84) of the second light emitter and receiver unit (76), and the converging lens (84), a second optical waveguide (88) and a light receiving member (80) of the second light emitter and receiver unit (76) form a first optical pathway (90) for data communication. A light generating member (78), a first optical waveguide (86) and a light diffuser (82) of the second light emitter and receiver unit (76), a distance in space between the light diffuser (82) and a converging lens (60) of the first light emitter and receiver unit (52), and a converging lens (60), a second optical waveguide (64) and a light receiving member (56) of the first light emitter and receiver unit (52) form a second optical pathway (92) for data communication. At least the light generating member (54) of the first light emitter and receiver unit (52) is configured to be arranged outside a volume defined by the scanning unit (12). The second light emitter and receiver unit (76) is configured to be at least partially arranged inside the volume (30); and a magnetic resonance examination system (10) comprising such light data communication link device (50) for establishing a bi-directional data communication link between a control unit (26) of the magnetic resonance examination system (10) and at least one auxiliary electronic device (40) being arranged inside the volume (30).
Abstract:
The present invention provides a method for magnetic resonance (MR) imaging of an area (144) of a subject of interest (120), comprising the steps of issuing a breath-hold command to the subject of interest (120), performing motion detection of the subject of interest (120) to detect a breath-hold condition in the area (144) of the subject of interest (120), upon detection of the breath-hold condition in the area (144) of the subject of interest (120), performing k-space (154) sampling of the area (144) of the subject of interest (120) with a given resolution, processing the k-space (154) samples covering the area (144) of the subject of interest (120) to obtain a MR image of the area (144) of the subject of interest (120). The present invention also provides a MR imaging system (110) for providing an image representation of an area (144) of a subject of interest (120) positioned in an examination space (116) of the MR imaging system (110), wherein the MR imaging system (110) is adapted to perform the method for magnetic resonance imaging according to the above method.
Abstract:
Combined use is made of image values at corresponding image locations defined by amide proton transfer MRI image data and 18F-FLT, 11C-MET, or 18F-FDG PET image data. The combined use may include computing multimodal heterogeneity for combined PET and amide proton transfer MRI image values, using PET image data to distinguish different image locations during processing and/or display of amide proton transfer image data, and tissue classification based on combinations of values derived from the amide proton transfer MRI and/or PET images.
Abstract:
A magnetic resonance imaging (MRI) location surveillance system (10) for determining access to a room (12) containing an MRI device (14) which includes a superconducting magnet and images subjects includes at least one video camera (26) positioned to view an entrance (26) to the room containing the MRI device (14), a recognize unit (36) in communication with the at least one video camera, a classify unit (37), and an authorize unit (38). The at least one video camera (26) images objects and persons approaching the entrance (16). The recognize unit (36) receives the imaged objects and persons, and recognizes each imaged object and each imaged person. The classify unit (37) classifies each recognized object (24) and each recognized person (22) according to MRI safety. The authorize unit (38) determines access to the room (14) containing the MRI device (14) based on each classified object and each classified person.
Abstract:
:The invention relates to a method of MR imaging of an object (10) placed in an examination volume of an MR system (1). It is an object of the invention to provide an improved quantitative MR imaging technique. The method comprises the steps of: subjecting the object (10) to an imaging sequence which generates MR signals in two or more spatially separate slices or volumes, wherein the imaging sequence is composed of a train of sequence blocks, each sequence block comprising at least one RF pulse and at least one switched readout magnetic field gradient defining a k-space sampling pattern and having associated therewith a set of acquisition parameters, acquiring the MR signals, wherein the MR signals are generated and/or manipulated in only a subset of said slices or volumes during each sequence block to acquire the MR signals in a time-multiplexed manner from all of the slices or volumes while simultaneously varying at least one acquisition parameter during the course of the imaging sequence, and reconstructing at least one MR image for each slice or volume, wherein one or more MR parameters are computed for a number of image positions from the temporal evolution of the acquired MR signals caused by the variation of the at least one acquisition parameter. Moreover, the invention relates to an MR system (1) for carrying out this method as well as to a computer program to be run on an MR system.
Abstract:
The invention provides for a medical imaging system (100, 300) comprising: a memory (112) for storing machine executable instructions (140) and a processor (106) for controlling the medical system. Execution of the machine executable instructions causes the processor to: receive (200, 400, 402) multiple magnetic resonance images (120), wherein each of the multiple magnetic resonance images comprises voxels; calculate (202) an image segmentation (122) for each of the multiple magnetic resonance images, wherein the image segmentation divides each of the multiple magnetic resonance images into regions; assign (204) a tissue classification (124) to each of the regions using a magnetic resonance imaging tissue classifier (144); calculate (206) a Hounsfield unit map (128) for each of the multiple magnetic resonance images by assigning a Hounsfield unit value to each of the voxels according to the tissue classification, wherein the Hounsfield mapping comprises a mapping between the tissue classification to Hounsfield units; and calculate (208) a virtual CT image (154) for each of the multiple magnetic resonance images using the Hounsfield unit mapping.
Abstract:
The present invention provides a safety monitoring device (10) for detecting radio frequency resonances in a subject of interest (12) comprising an essentially tubular examination space (14), which is vertically arranged, for locating therein the subject of interest (12), an radio frequency resonance device (16), which has at least one connection port (21), for covering at least a part of the examination space (14) along its longitudinal axis, a rotation device(22) for rotating the radio frequency resonance device (16) relative to the subject of interest (12), a controlling device (30) for controlling the rotation of the radio frequency resonance device (16), and a detection device (34) for monitoring an impedance of the at least one connection port (21) of the radio frequency resonance device (16) during the rotation and detecting radio frequency resonances out of the monitored impedance of the at least one connection port (21) of the radio frequency resonance device (16). The present invention further provides a method for detecting radio frequency resonances in a subject of interest (12) comprising the steps of locating the subject of interest (12) within an essentially tubular examination space (14), which is vertically arranged, rotating a radio frequency resonance device (16), which has at least one connection port (21), relative to at least a part of the examination space (14) along its longitudinal axis, monitoring an impedance of the at least one connection port (21) of the radio frequency resonance device during (16) the rotation, and detecting radio frequency resonances out of the monitored impedance of the at least one connection port (21) of the radio frequency resonance device (16).
Abstract:
A magnetic resonance imaging (MRI) system (600) for obtaining magnetic resonance (MR) images of a volume. The MRI system may include at least one controller(610) which may be configured to perform a preparation scan (103, 301) to acquire preparation echo phase information (105, PEPI) for a plurality of dynamics of a scan (300); output a plurality of pulse sequences (200) each of which is configured for a corresponding dynamic of the plurality of dynamics of the scan and comprises a navigator sequence (204) and an image sequence (206); acquire navigation and image information (111, 117) for each corresponding pulse sequence of the plurality of pulse sequences; and/or form corrected image information (125) by correcting echo phase information of the image information in accordance with the preparation echo phase information, correcting at least one of gradient delay and frequency offset of the image information in accordance with the navigation information.
Abstract:
The present invention relates to a magnetic resonance imaging, MRI, system (200) for acquiring magnetic resonance data from a target volume in a subject (218), the MRI system (200) comprising a memory (236) for storing machine executable instructions; and a processor (230) for controlling the MRI system (200), wherein execution of the machine executable instructions causes the processor (230) to use a first MRI sequence (401) containing a first selective RF pulse (413) followed by a first excitation RF pulse (415) to control the MRI system (200) to selectively excite and saturate exchangeable amide protons within a first frequency range in the target volume; irradiate said target volume with the first excitation RF pulse (415) that is adapted to excite bulk water protons in the target volume; and acquire first magnetic resonance imaging data from the target volume in response to the first excitation RF pulse (415); use a second MRI sequence (403) containing a second selective RF pulse (423) followed by a second excitation RF pulse (425) to control the MRI system (200) to selectively excite and saturate the exchangeable amide protons within a second frequency range in the target volume; irradiate said target volume with the second excitation RF pulse (425) that is adapted to excite said bulk water protons; and acquire second magnetic resonance imaging data from said target volume in response to the second excitation RF pulse (425); wherein the first MRI sequence (401) comprises gradients (417) having first gradient polarities reverse of second gradient polarities (427) of the second MRI sequence (403).