Abstract:
It is an object of the invention to provide a radio frequency (RF) transmit- receive coil (1) for a magnetic resonance (MR) imaging system with an integrated vital signs detector (3) for the detection of vital signs of a patient within the magnetic resonance (MR) imaging system, whereby contact sensors directly attached to the body of the patient, are replaced by a contactless system for monitoring vital signs, which makes it much easier to measure vital signs of the patient. The object is achieved by a RF transmit-receive coil (1) comprising a vital signs detector (3) wherein the vital signs detector (3) is integrated in the RF transmit-receive coil (1), wherein a pair of electrically conducting coil elements (4) of the RF transmit-receive coil (1) forms the vital signs detector (3), wherein the vital signs detector (3) is a capacitive vital signs detector (3), the capacitive vital signs detector (3) being adapted for receiving capacitive vital signs signals. The present invention also concerns a system for the detection of vital signs of a patient within a magnetic resonance (MR) imaging system, a method for operating the system for the detection of vital signs of a patient within a magnetic resonance (MR) imaging system, a software package for a magnetic resonance (MR) imaging system and a software package for upgrading a magnetic resonance (MR) imaging system.
Abstract:
A device and method for detecting motion and position of a patient positioned within a magnetic resonance imaging system, the device including at least one sensor configured to be capacitively coupled to the patient during magnetic resonance imaging. The method includes, while a patient is positioned within a magnetic resonance imaging system, measuring a reflected power value indicative of an amount of power reflected by the at least one sensor in response to being driven by at least one RF signal, and determining, using the reflected power value, whether the patient has moved.
Abstract:
The present invention relates to a magnetic resonance eye imaging method, wherein an eye image is obtained from magnetic resonance image data acquired while the eye is moving, comprising determining eye orientation information data during magnetic resonance image data acquisition; binning the acquired magnetic resonance image data into groups according to eye orientation information data; and constructing a magnetic resonance image eye image from a selection of groups of magnetic resonance image data.
Abstract:
The invention provides for a medical imaging system (100, 300) comprising: a memory (110) for storing machine executable instructions (120) and a processor (104) for controlling the medical imaging system. Execution of the machine executable instructions causes the processor to: receive (200) magnetic resonance imaging data (122) descriptive of a subject (318), wherein the magnetic resonance imaging data is segmented into sequential data portions (124), wherein the magnetic resonance imaging data was acquired according to a three-dimensional magnetic resonance imaging protocol, wherein the magnetic resonance data within each of the sequential data portions is sampled in-plane using a rotating k-space sampling profile, wherein the magnetic resonance data within each of the sequential data portions is sampled using a segmented phase encoding in a thru-plane direction; and reconstruct (202) a navigator image (128) for each of the sequential data portions according to the three-dimensional magnetic resonance imaging protocol.
Abstract:
The invention provides for a medical imaging system (100, 300, 500) comprising a processor (104). Machine executable instructions cause the processor to: receive (200) magnetic resonance data (120) comprising discrete data portions (612) that are rotated in k-space; bin (202) the discrete data portions into predetermined motion bins (122) using a motion signal value; reconstruct (204) a reference image (124) for each of the predetermined motion bins; construct (206) a motion transform (126) between the reference images; bin (208) a chosen group (610) of the discrete data portions into a chosen time bin (128). Generate an enhanced image (130) for the chosen time bin using the chosen group fo the discrete data portions and the motion transform of each of the chosen group to correct the discrete data portions.
Abstract:
The invention provides for a magnetic resonance imaging system (100, 200) comprising a memory (148) for storing machine executable instructions (150) and pulse sequence commands (152). The pulse sequence commands are configured for acquiring a four dimensional magnetic resonance data set (162) from an imaging region of interest (109). The four dimensional magnetic resonance data set is at least divided into three dimensional data magnetic resonance data sets (400, 402, 404, 406, 408) indexed by a repetitive motion phase of the subject. The three dimensional data magnetic resonance data sets are further at least divided into and indexed by k-space portions (410, 412, 414, 416, 418, 420, 422, 424, 426, 428, 430, 432, 434, 436). The magnetic resonance imaging system further comprises a processor (144) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor during a first operational portion (310) to iteratively: receive (300) a motion signal (156) descriptive of the repetitive motion phase; acquire (302) an initial k-space portion using the pulse sequence commands, wherein the initial k-space portion is selected from the k-space portions; store (304) the motion signal and the initial k-space portion in a buffer (158) for each iteration of the first operational portion; at least partially construct (306) a motion phase mapping (160) between the motion signal and the repetitive motion phase; and continue (308) the first operational portion until the motion phase mapping is complete. Execution of the machine executable instructions causes the processor to assign (312) the initial k-space portion for each iteration of the first operational portion in the temporary buffer to the four dimensional magnetic resonance data set using the motion phase mapping. Execution of the machine executable instructions causes the processor during a second operational portion (332) to iteratively: receive (314) the motion signal; determine (316) a predicted next motion phase using the motion signal and the motion phase mapping; select (318) a subsequent k-space portion (154) from the k-space portions of the four dimensional magnetic resonance data set using the predicted next motion phase; acquire (320) the subsequent k-space portion using the pulse sequence commands; rereceive (322) the motion signal; determine (324) a current motion phase using the re-received motion signal and the motion phase mapping; assign (326) the subsequent k-space portion to the four dimensional magnetic resonance data set using the current motion phase; and repeat (328) the second operational portion until the k-space portions for each repetitive motion phase has been assigned.
Abstract:
Apparatus and techniques are described herein for nuclear magnetic resonance (MR) projection imaging. Such projection imaging may be used for generating four-dimensional (4D) imaging information representative of a physiologic cycle of a subject, such as including generating two or more two-dimensional (2D) images, the 2D images comprising projection images representative of different projection angles, and the 2D images generated using imaging information obtained via nuclear magnetic resonance (MR) imaging, assigning the particular 2D images to bins at least in part using information indicative of temporal positions within the physiologic cycle corresponding to the particular 2D images, constructing three-dimensional (3D) images using the binned 2D images, and constructing the 4D imaging information, comprising aggregating the 3D images.
Abstract:
A new MRI imaging sequence, the Septal Scout, has been presented. This new technique can accurately determine the timing of diastasis windows for the purpose of cardiac gating in applications such as high-resolution coronary MRA. The Septal Scout acquires 1D MR images along the long-axis of the basal ventricular septum either through projection imaging or 2D excitations. Each acquisition produces a line of data along the ventricular septum. The acquisition is repeated over time to generate a time-map of Septal Scouts. The data from the Septal Scout time-map is processed to generate a velocity graph of an ROI near the basal septum. From this graph, the beginning and end of diastasis is determined. This timing information is available for use to facilitate cardiac gating in subsequent high-resolution MR angiography.
Abstract:
A magnetic resonance imaging system utilizing measured prepulse delay times. A data acquisition module (68) delivers a shared magnetization preparation pulse (102, e.g. an inversion pulse) followed by imaging sequences for generating image profiles (104, 106, 108) of a patient (12). Next, a first plurality of image datasets of the patient (12) is acquired in an ECG-triggered manner. Delay times are measured between the shared pulse (102) delivered and acquisition of each individual image dataset (104a, 104b, 104c) of the image profile (104). The measured delay times are compared to calculate expected delay times for each image dataset. The image datasets are accepted if the delay time is inside a range of the expected delay time, thereby avoiding that arrhythmia of the heartbeat of the patient results in image artifacts. The image datasets are accepted or rejected if a respiratory phase is inside or outside a respiratory window (133). The image profile is accepted if all or the majority of the individual image datasets are accepted.
Abstract:
A system and method for controlling a magnetic resonance imaging (MRI) system to acquire images of a subject having inconsistencies in a cardiac cycle of the subject. The process includes receiving an identification of a predetermined point in a cardiac cycle of the subject and, thereupon, performing a saturation module configured to dephase magnetization within a region of interest (ROI) from before the predetermined point. The process also includes performing an inversion module configured to invert spins within the ROI and acquiring medical imaging data from the subject. A delay is inserted between the performance of the saturation module and the performance of the inversion module, wherein a duration of the delay is configured, with the saturation module, to control evidence in the medical imaging data of inconsistencies in the cardiac cycle of the subject by controlling a magnetization history of tissue in the ROI.