BEHAVIOR TRAINED CLINICAL SUPPORT
    1.
    发明申请
    BEHAVIOR TRAINED CLINICAL SUPPORT 审中-公开
    行为训练的临床支持

    公开(公告)号:WO2017109683A1

    公开(公告)日:2017-06-29

    申请号:PCT/IB2016/057802

    申请日:2016-12-20

    Abstract: Systems for user behavior-trained clinical support. Features of the present invention monitor users to track their behavior while using medical devices/software. This information is combined with physiological parameters of patients to train new clinical decision support (CDS) algorithms to provide improvement in deterioration detection, alarm management, and decision and navigation support.

    Abstract translation:

    用于用户行为训练的临床支持的系统。 本发明的特征监控用户在使用医疗设备/软件时跟踪他们的行为。 这些信息与患者的生理参数相结合,以培训新的临床决策支持(CDS)算法,以改善恶化检测,警报管理以及决策和导航支持。

    METHODS AND SYSTEMS FOR PROVIDING CUSTOMIZED SETTINGS FOR PATIENT MONITORS
    2.
    发明申请
    METHODS AND SYSTEMS FOR PROVIDING CUSTOMIZED SETTINGS FOR PATIENT MONITORS 审中-公开
    用于为患者监测器提供定制设置的方法和系统

    公开(公告)号:WO2017203002A1

    公开(公告)日:2017-11-30

    申请号:PCT/EP2017/062686

    申请日:2017-05-24

    Abstract: A method for providing one or more customized alarm setting recommendations for a patient includes the steps of: providing a patient monitor configured to monitor the patient, the patient monitor comprising a patient sensor and a processor configured to receive the sensor data from the patient sensor; receiving, by the patient monitor, information about a patient; analyzing, by the processor using an alarm setting recommendation classifier, the received information about the patient to generate one or more alarm setting recommendations customized to the patient; providing the one or more alarm setting recommendations to the user; and receiving input from the user accepting, rejecting, and/or modifying the alarm setting recommendations.

    Abstract translation: 用于为患者提供一个或多个定制警报设置推荐的方法包括以下步骤:提供被配置成监视患者的患者监视器,患者监视器包括患者传感器和被配置为接收 来自患者传感器的传感器数据; 由患者监视器接收关于患者的信息; 由处理器使用警报设置建议分类器分析所接收的关于患者的信息以生成针对患者定制的一个或多个警报设置推荐; 向用户提供一个或多个警报设置推荐; 并接收来自用户的接受,拒绝和/或修改警报设置建议的输入。

    ESTIMATION AND USE OF CLINICIAN ASSESSMENT OF PATIENT ACUITY
    3.
    发明申请
    ESTIMATION AND USE OF CLINICIAN ASSESSMENT OF PATIENT ACUITY 审中-公开
    估计和使用临床评估患者的适应度

    公开(公告)号:WO2017191227A1

    公开(公告)日:2017-11-09

    申请号:PCT/EP2017/060591

    申请日:2017-05-04

    Abstract: The present disclosure relates to estimation and use of clinician assessment of patient acuity. In various embodiments, a plurality of patient feature vectors associated with a plurality of respective patients may be obtained (302, 304). Each patient feature vector may include one or more health indicator features indicative of observable health indicators of a patient, and one or more treatment features indicative of characteristics of treatment provided to the patient. A machine learning model (216) may be trained (306) based on the patient feature vectors to receive, as input, subsequent patient feature vectors, and to provide, as output, indications of levels of clinician acuity assessment. Later, a patient feature vector associated with a given patient may be provided (404) as input to the machine learning model. Based on output from the machine learning model, a level of clinician acuity assessment associated with the given patient may be estimated (406) and used (408-416) for various applications.

    Abstract translation: 本公开涉及估计和使用临床医师对患者视力的评估。 在各种实施例中,可以获得与多个相应患者相关联的多个患者特征向量(302,304)。 每个患者特征向量可以包括指示患者的可观察健康指示符的一个或多个健康指示符特征以及指示提供给患者的治疗特征的一个或多个治疗特征。 机器学习模型(216)可以基于患者特征向量被训练(306)以接收作为输入的后续患者特征向量,并且作为输出提供临床医生敏锐度评估的水平的指示。 之后,可以提供与给定患者相关联的患者特征向量(404)作为机器学习模型的输入。 基于机器学习模型的输出,可以估计(406)与用于(408-416)用于各种应用的与给定患者相关的临床医师视力评估的水平。

    SYSTEMS AND METHODS FOR DETERMINING HEALTHCARE QUALITY MEASURES BY EVALUATING SUBJECT HEALTHCARE DATA IN REAL-TIME
    4.
    发明申请
    SYSTEMS AND METHODS FOR DETERMINING HEALTHCARE QUALITY MEASURES BY EVALUATING SUBJECT HEALTHCARE DATA IN REAL-TIME 审中-公开
    通过实时评估主题医疗数据来确定医疗质量措施的系统和方法

    公开(公告)号:WO2017211616A1

    公开(公告)日:2017-12-14

    申请号:PCT/EP2017/062988

    申请日:2017-05-30

    Abstract: The present disclosure pertains to obtaining information that facilitates determining healthcare quality measures by evaluating subject healthcare data in real-time. Information is obtained that facilitates determination of compliance with healthcare quality measures. This is accomplished by running queries on a clinical database comprising subject healthcare data. Natural language processing is utilized to extract subject healthcare data at various times from the clinical database based on individual queries, thus determining any changes in subject healthcare data over time. A rule -based component is used to implement healthcare quality measures and evaluate updated subject healthcare data based upon rules.

    Abstract translation: 本公开涉及通过实时评估主体保健数据来获得有助于确定保健质量测量的信息。 获得有助于确定是否符合医疗质量措施的信息。 这是通过对包含主题医疗保健数据的临床数据库运行查询来完成的。 利用自然语言处理在不同时间从临床数据库基于个人查询提取主题医疗保健数据,从而确定随着时间的推移主题保健数据的任何变化。 基于规则的组件用于实施医疗保健质量测量,并根据规则评估更新后的医疗保健数据。

    OPTIMIZATION OF ALARM SETTINGS FOR ALARM CONSULTANCY USING ALARM REGENERATION
    5.
    发明申请
    OPTIMIZATION OF ALARM SETTINGS FOR ALARM CONSULTANCY USING ALARM REGENERATION 审中-公开
    使用报警再生的报警设置报警优化

    公开(公告)号:WO2015136406A1

    公开(公告)日:2015-09-17

    申请号:PCT/IB2015/051530

    申请日:2015-03-03

    CPC classification number: G16H40/63 G06F19/00 G06F19/3418 G16H50/20 G16H50/30

    Abstract: A system (38) and a method (150) for optimization of alarm settings of a clinical alarm algorithm. Clinical monitoring data (CMD) employed by the clinical alarm algorithm is acquired over a user-defined period of time. Proposed settings are determined for one or more parameters of the clinical alarm algorithm. The clinical monitoring algorithm is applied to the acquired CMD with the proposed settings to determine regeneration results predicting alarm load for different combinations of the proposed settings.

    Abstract translation: 一种用于优化临床报警算法的报警设置的系统(38)和方法(150)。 在用户定义的时间段内获取临床报警算法采用的临床监测数据(CMD)。 确定临床报警算法的一个或多个参数的建议设置。 临床监测算法应用于所提取设置的获取CMD,以确定为提出的设置的不同组合预测报警负载的再生结果。

    PATIENT HEALTH STATE COMPOUND SCORE DISTRIBUTION AND/OR REPRESENTATIVE COMPOUND SCORE BASED THEREON
    6.
    发明申请
    PATIENT HEALTH STATE COMPOUND SCORE DISTRIBUTION AND/OR REPRESENTATIVE COMPOUND SCORE BASED THEREON 审中-公开
    患者健康状态化合物分配和/或代表性分析基础

    公开(公告)号:WO2015044826A1

    公开(公告)日:2015-04-02

    申请号:PCT/IB2014/064509

    申请日:2014-09-15

    CPC classification number: G06F19/3431 G06F19/00 G16H50/30

    Abstract: A method includes generating at least first and second histograms respectively for at least first and second sets of vital sign measurements using at least first and second predetermined bins. The first and second sets of the vital sign measurements each include at least two measurements acquired at different times, and the first and second vital sign are different vital signs. The method further includes generating a first score distribution for the first vital sign by mapping each bin of the first predetermined bins to a corresponding predetermined score. The method further includes generating a second score distribution for the second vital sign by mapping each bin of the second predetermined bins to a corresponding predetermined score. The method further includes generating a compound score distribution for the first and second vital signs based on the first and second score distributions, the compound score distribution indicates a patient's health state.

    Abstract translation: 一种方法包括使用至少第一和第二预定仓分别生成至少第一组和第二组生命体征测量的至少第一和第二直方图。 生命体征测量的第一组和第二组各自包括在不同时间获取的至少两次测量,第一和第二生命体征是不同的生命体征。 该方法还包括通过将第一预定仓的每个箱映射到相应的预定分数来产生用于第一生命体征的第一分数分布。 该方法还包括通过将第二预定仓的每个箱映射到相应的预定分数来产生用于第二生命体征的第二分数分布。 该方法还包括基于第一和第二分数分布产生第一和第二生命体征的复合分数分布,复合分数分布指示患者的健康状态。

    METHOD FOR SCORE CONFIDENCE INTERVAL ESTIMATION WHEN VITAL SIGN SAMPLING FREQUENCY IS LIMITED
    7.
    发明申请
    METHOD FOR SCORE CONFIDENCE INTERVAL ESTIMATION WHEN VITAL SIGN SAMPLING FREQUENCY IS LIMITED 审中-公开
    方正信号采样频率有限公司评估信息间隔估算方法

    公开(公告)号:WO2016079654A1

    公开(公告)日:2016-05-26

    申请号:PCT/IB2015/058847

    申请日:2015-11-16

    Abstract: The following relates generally to the medical monitoring arts, medical warning systems concerning a monitored patient, and so forth. In clinical settings, alarms are usually triggered when a single-parameter or a multi-parameter score exceeds certain thresholds. When a score needs to be determined, if certain parameters are not available, the common practice is to use the most recent measurements of the parameters for the score calculation. However, a patient's status may change from moment to moment. The parameters measured hours ago may not be a good indicator of the patient's current status. This uncertainty can put deteriorating patients at great risk. An embodiment uses statistical methods to estimate a range of scores and the probability of these scores if old measurements have to be used for score determination. Instead of giving a single number at a time, a confidence interval may be displayed to emphasize the fact that the score is determined partially based on old measurements. If there is a chance that the actual score is higher and may exceed a critical alarm threshold, a notification can be issued to advise a new measurement reading to improve score confidence.

    Abstract translation: 以下涉及医疗监视技术,涉及被监视患者的医疗警告系统等等。 在临床设置中,当单参数或多参数得分超过某些阈值时,通常会触发报警。 当需要确定分数时,如果某些参数不可用,通常的做法是使用最近测量的参数进行分数计算。 然而,患者的身份可能会随时改变。 小时前测量的参数可能不是患者目前状态的良好指标。 这种不确定性可能导致患者恶化的风险很大。 一个实施例使用统计方法来估计分数的范围和这些分数的概率,如果旧的测量必须用于分数确定。 不是一次给出单个数字,而是可以显示置信区间以强调基于旧测量部分地确定得分的事实。 如果实际得分高于可能超过临界警报阈值的机会,则可发出通知以建议新的测量读数以提高得分置信度。

Patent Agency Ranking