Abstract:
The present invention discloses a technique provisioning network cryptographic keys to a client when direct physical transfer is not feasible. In an embodiment of the invention, a client token generates a temporary key encrypted with a first secret key known only in a master token database and passes this on to an enterprise network token of a network to which service is requested. The enterprise network token then further encrypts the encrypted temporary key with a second secret key and passes that on to the master token database. Since the second secret key is also known by the master token database, the originally encrypted temporary key can be securely decoded only by a master token coupled to the master token database. The decrypted temporary key can then be re-encrypted with a key known only by the enterprise network token and the master token, and returned to the enterprise network token. This allows the enterprise network token to gain secure access to the temporary key of the client token, thereby allowing the enterprise network token to securely provision the remote client token with the appropriate enterprise Network Keys.
Abstract:
An authentication and mass subscriber management technique is provided by employing a key table derived as a subset of a larger key pool, a network edge device, and authentication tokens attached on both the network edge device and on a subscriber’s computing device. The network edge device and subscriber’s computing device are provided with secure, tamper-resistant network keys for encrypting all transactions across the wired/wireless segment between supplicant (subscriber) and authenticator (network edge device ). In an embodiment of the invention, a secure, secret user key is shared between a number of subscribers based upon commonalities between serial numbers of those subscribers’ tokens. In another embodiment of the invention, a unique session key is generated for each subscriber even though multiple subscribers connected to the same network connection point might have identical pre-stored secret keys.
Abstract:
A method of encrypting broadcast and multicast data communicated between two or more parties, each party having knowledge of a shared key, is provided. The key is calculated using values, some of which are communicated between the parties, so that the shared key is not itself transferred. Avoiding the transfer of the key offers several advantages over existing encryption methods.
Abstract:
A method of processing a codec sample is provided. The method includes: removing from a first portion of the codec sample, a first number of first information bits. The first information bits are indicative of frame information associated with the codec sample. The method also includes inserting at the first portion of the codec sample from a second portion of the codec sample, a second number of data bits. The first number of the first information bits is greater than or equal to the second number of the data bits. The method also includes removing the second portion of the codec sample. The method may also include encrypting and decrypting the codec sample. In some embodiments, the codec sample is an adaptive multi-rate codec sample. In some embodiments, the adaptive multi-rate codec sample is a 5.15 mode adaptive multi-rate codec sample.
Abstract:
The present invention provides a technique for automatically establishing efficient, remote, secure client connections to one or more locations using a smart card enabled client driver and a smart card enabled network edge device ("Subnet Box") capable of establishing an end-to-end hardware encrypted tunnel between itself and the client. In an embodiment of the invention, a method of establishing a secure communications tunnel comprises the steps of: authenticating a remote client to a subnet box on a private network, wherein the remote client is connected to the subnet box via a public network, establishing a tunnel between the remote client and the subnet box, and encapsulating all traffic in the tunnel, wherein the tunnel is established only when a unique physical token is coupled to the remote device. The unique physical token comprises a smartcard and is configured to be inserted into a communications port of the remote device. The step of authenticating comprises the steps of: receiving an authentication packet, wherein the first authentication packet comprises an identifier identifying the unique physical token and a first random number, and transmitting a response authentication packet, wherein the response authentication packet comprise a second random number. The step of establishing a secure communications tunnel comprises the step of generating a cryptographic key based on the first and second random numbers.
Abstract:
The invention provides an external in-line device ("Subnet Box") placed between a network and an access point to achieve secure Wi-Fi communications without needing to modify the access point. The Subnet Box comprises an embedded token and will authenticate users based on pre-stored access rights. In at least one embodiment of the invention, the Subnet Box comprises: a first communications port for intercepting data packets communicated to and from a wired communications network; a second communications port for intercepting data packets communicated to and from a wireless access point, wherein the wireless access point is an edge device of the wired communications network; a database comprising a number of serial numbers each associated with a client token and a secret cryptographic key; and a processor for determining whether a computing device having a client token can access the wired communications network via the wireless access point. The processor establishes a secure tunnel between the computing device and the first communications port.
Abstract:
An system for and method of providing end-to-end encrypted real-time phone calls using a commodity mobile phone and without requiring service provider cooperation is presented. The system and method improve upon prior art techniques by omitting any requirement for mobile phones that are specially manufactured to include end-to-end encryption functionality.
Abstract:
A method of per-packet keying for encrypting and decrypting data transferred between two or more parties, each party having knowledge of a shared key that allows a per-packet key to differ for each packet is provided. Avoiding the use of a static session key during encryption offers several advantages over existing encryption methods. For example, rejecting packets received with duplicate sequence numbers, or sequence numbers that are beyond a specified deviation range mitigates Replay Attacks.
Abstract:
A system for and method of providing encrypted network communications is presented. The system and method involve creating encrypted frames used for secure communications between cooperating peers that are the same size as the original unencrypted frames. The system and method thus provide secure communications with essentially the same transmission characteristics as non-encrypted communications.
Abstract:
The invention provides a secure Wi-Fi communications method and system. In an embodiment of the invention, unique physical keys, or tokens, are installed at an access point and each client device of the network. Each key comprises a unique serial number and a common network send cryptographic key and a common network receive cryptographic key used only during the authentication phase by all components on the LAN. Each client key further includes a secret cryptographic key unique to each client device. During authentication, two random numbers are generated per communications session and are known by both sides of the wireless channel. Only the random numbers are sent across the wireless channel and in each case these numbers are encrypted. A transposed cryptographic key is derived from the unique secret cryptographic key using the random numbers generated during authentication. Thus, both sides of the wireless channel know the transposed cryptographic key without it ever being transmitted between the two.