Abstract:
Described herein are systems and methods for providing a natural language comprehension system that employs a two-stage process for machine comprehension of text. The first stage indicates words in one or more text passages that potentially answer a question. The first stage outputs a set of candidate answers for the question, along with a first probability of correctness for each candidate answer. The second stage forms one or more hypotheses by inserting each candidate answer into the question and determines whether a sematic relationship exists between each hypothesis and each sentence in the text. The second processing circuitry generates a second probability of correctness for each candidate answer and combines the first probability with the second probability to produce a score that is used to rank the candidate answers. The candidate answer with the highest score is selected as a predicted answer.
Abstract:
Examples of the present disclosure provide systems and methods relating to a machine comprehension test with a learning-based approach, harnessing neural networks arranged in a parallel hierarchy. This parallel hierarchy enables the model to compare the passage, question, and answer from a variety of perspectives, as opposed to using a manually designed set of features. Perspectives may range from the word level to sentence fragments to sequences of sentences, and networks operate on word-embedding representations of text. A training methodology for small data is also provided.
Abstract:
Described herein are systems and methods for providing a natural language comprehension system (NLCS) that iteratively performs an alternating search to gather information that may be used to predict the answer to the question. The NLCS first attends to a query glimpse of the question, and then finds one or more corresponding matches by attending to a text glimpse of the text.
Abstract:
Described herein are systems and methods for providing a natural language generator in a spoken dialogue system that considers both lexicalized and delexicalized dialogue act slot-value pairs when translating one or more dialogue act slot-value pairs into a natural language output. Each slot and value associated with the slot in a dialogue act are represented as (dialogue act + slot, value), where the first term (dialogue act + slot) is delexicalized and the second term (value) is lexicalized. Each dialogue act slot-value representation is processed to produce to produce at least one delexicalized sentence as an output. A lexicalized sentence is produced by replacing each delexicalized slot with the value associated with the delexicalized slot.
Abstract:
Described herein are systems and methods for providing a natural language comprehension system that employs a two-stage process for machine comprehension of text. The first stage indicates words in one or more text passages that potentially answer a question. The first stage outputs a set of candidate answers for the question, along with a first probability of correctness for each candidate answer. The second stage forms one or more hypotheses by inserting each candidate answer into the question and determines whether a sematic relationship exists between each hypothesis and each sentence in the text. The second processing circuitry generates a second probability of correctness for each candidate answer and combines the first probability with the second probability to produce a score that is used to rank the candidate answers. The candidate answer with the highest score is selected as a predicted answer.