Abstract:
Disclosed embodiments include systems and methods relevant to improvements to natural language processing used to determine an intent and one or more associated parameters from a given input string. In an example, an input string is received and first and second different n-grams are applied to the input string. Recurrent neural network models are then used to generate output data based in part on the first and second different n-grams. Intent detection and semantic labeling are applied to the output of the recurrent neural network models.
Abstract:
Described herein are systems and methods for providing a natural language comprehension system that employs a two-stage process for machine comprehension of text. The first stage indicates words in one or more text passages that potentially answer a question. The first stage outputs a set of candidate answers for the question, along with a first probability of correctness for each candidate answer. The second stage forms one or more hypotheses by inserting each candidate answer into the question and determines whether a sematic relationship exists between each hypothesis and each sentence in the text. The second processing circuitry generates a second probability of correctness for each candidate answer and combines the first probability with the second probability to produce a score that is used to rank the candidate answers. The candidate answer with the highest score is selected as a predicted answer.
Abstract:
Examples of the present disclosure provide systems and methods relating to a machine comprehension test with a learning-based approach, harnessing neural networks arranged in a parallel hierarchy. This parallel hierarchy enables the model to compare the passage, question, and answer from a variety of perspectives, as opposed to using a manually designed set of features. Perspectives may range from the word level to sentence fragments to sequences of sentences, and networks operate on word-embedding representations of text. A training methodology for small data is also provided.
Abstract:
Described herein are systems and methods for providing a natural language comprehension system that employs a two-stage process for machine comprehension of text. The first stage indicates words in one or more text passages that potentially answer a question. The first stage outputs a set of candidate answers for the question, along with a first probability of correctness for each candidate answer. The second stage forms one or more hypotheses by inserting each candidate answer into the question and determines whether a sematic relationship exists between each hypothesis and each sentence in the text. The second processing circuitry generates a second probability of correctness for each candidate answer and combines the first probability with the second probability to produce a score that is used to rank the candidate answers. The candidate answer with the highest score is selected as a predicted answer.