Abstract:
A method for calibrating dark field microcopy setup is disclosed. The method includes preparing a plurality of particle samples, each with a known concentration and particle size, the plurality having more than one particle size and, optionally, more than one refractive index and more than one diluent. For each sample in the plurality, the sample is measured in the setup and the scattered light intensity and number of particles is measured. From this data, a relationship between the scattered light intensity, particle size and calibrated investigated volume can be determined. The calibrated investigated volume is used to obtain the proper particle size distribution in a given diluent.
Abstract:
A special purpose cuvette assembly with features that create a small, restricted volume to minimize bulk movements of liquid and that minimize backscattering of light. The special-purpose cuvette assembly enables recording of Brownian movements of nanoparticles in a liquid when it is placed in a suitable optical device comprising a light sheet and an optical microscope attached to a video camera that is oriented perpendicular to the light-sheet plane.
Abstract:
A system for determining the growth/dissolution rate of colloidal particles is disclosed and includes multiple light sources and multiple sensors. A light source is constructed to emit a beam of electromagnetic radiation at a specimen chamber that holds the colloidal particles. The chamber allows a portion of the combined beam to scatter perpendicularly or at some other angle to the combined beam. The scattered portion of the beam is directed to a sensor that detects electromagnetic radiation. The sensor is connected to processor that activates the light source and obtains an image from the sensor. Multiple images are taken at a time interval and for each image taken, and a total image intensity level is calculated and normalized. A formula is then calculated that fits the normalized values over time and a slope is determined from the formula.