Abstract:
Disclosed herein are methods of detecting a regulatory element, determining the localization of a regulatory element, and/or measuring the activity of a regulatory element.
Abstract:
A method (101) of using an apparatus comprising a processor to determine a diffusion coefficient ( D ) of a solute in a solution flowing in a capillary, comprising: obtaining a first signal (501) comprising a plurality of measurements of solute concentration measured at a first measurement location corresponding with a first mean measurement time that is before a full dispersion condition is met;obtaining a second signal (502) comprising a plurality of measurements of solute concentration measured at a second measurement location corresponding with a second mean measurement time that is after the first mean measurement time and before a full dispersion condition is met; determining a first front amplitude A 1 of a solute front from the first signal (501); determining a second front amplitude A 2 of a solute front from the second signal (502), the second front amplitude corresponding to the arrival of fast moving molecules travelling at or near a central streamline at the second measurement location; calculating: an actual front height ratio A 2 /A 1 of the second front amplitude A 2 to the first front amplitude A 1 ; a convection front height ratio h expected for a pure convection regime; and a proportion f of the solute that dispersed between the first mean measurement time and the second mean measurement time, the proportion f calculated using the actual front height ratio A 2 /A 1 and the convection front height ratio h ;deriving a value of the diffusion coefficient ( D ) of the solute from a relationship between the proportion f and the diffusion coefficient, the relationship corresponding with the measurement conditions of the first and second signal.
Abstract:
Systems and methods for holographic characterization of protein aggregates. Size and refractive index of individual aggregates in a solution can be determined. Information regarding morphology and porosity can be extracted from holographic data.
Abstract:
A method of detecting particles (1), e. g. proteins, after separation of particles based on their specific features, e.g. charge, size, shape, density, as series of single light scattering events created by the individual particles is described. The particles (1) are separated from each other along the separation path (11) and particles have specific arrival times at the target side depending on the particle features. The detecting step comprises an interferometric sensing of the light scattered at individual particles bound or transient in the detection volume (30). Parameters of the scattering light signals e.g. the interferometric contrast are analysed for obtaining specific particle features, e.g. size, mass, shape, charge, or affinity of the particles (1). Furthermore, a detection apparatus (100) being configured for detecting particles (1) is described.
Abstract:
A nanoparticle screening chip and a method using said chip allowing for determining physical properties of nanoparticles, wherein the screening chip comprises a substrate having a working surface divided into a plurality of areas, wherein (1) each of these areas presents different surface properties defined by surface energy component (d,b,a), the total free energy γTOT of the surface of each area being defined as follows: γTOT= γLW+ 2(γ+γ-)0.5, wherein the components are: γLW=dispersive component = d, γ+= electron acceptor component = b, γ-= electron donor component = a; and (2) each of these areas comprises a plurality of subareas, each subarea comprising an array of sub-micrometric holes or elongated grooves with a different aperture size (S1, S2, S3,...).
Abstract translation:纳米颗粒筛选芯片和使用所述芯片的方法,其允许确定纳米颗粒的物理性质,其中所述筛选芯片包括具有分为多个区域的工作表面的基底,其中(1)这些区域中的每一个呈现由 表面能成分(d,b,a),各面的总自由能γTOT定义如下:γTOT=γLW+ 2(γ+γ)0.5,其中成分为:γLW=色散成分= d ,γ+ =电子受体成分= b,γ=电子给体成分= a; 和(2)这些区域中的每一个包括多个子区域,每个子区域包括具有不同孔径尺寸(S1,S2,S3,...)的亚微米孔或细长槽阵列。
Abstract:
Selon un aspect, l'invention concerne un dispositif (100) pour la détection optique en transmission de nanoparticules en mouvement dans un échantillon fluide comprenant: - une source lumineuse (10) pour l'émission d'un faisceau d'éclairage de l'échantillon spatialement incohérent; - un système optique imageur (30) comprenant un objectif de microscope (31); - un détecteur optique bidimensionnel (40) comprenant un plan de détection (41) conjugué d'un plan focal objet de l'objectif de microscope par ledit système optique imageur (30), et permettant l'acquisition d'une séquence d'images d'un volume d'analyse de l'échantillon, chaque image résultant des interférences optiques entre le faisceau d'éclairage incident sur l'échantillon et les faisceaux diffusés par chacune des nanoparticules présentes dans le volume d'analyse pendant une durée prédéterminée inférieure à une milliseconde; des moyens de traitement d'images (50) permettant de réaliser une moyenne sur une séquence desdites images et de retrancher à chaque image la dite moyenne afin de déterminer, pour chaque nanoparticule du volume d'analyse, l'amplitude du faisceau diffusé.
Abstract:
Systems and methods of fabricating and functionalizing patterned nanowire probes that are stable under fluid reservoir conditions and have imageable contrast are provided. Optical imaging and deconstruction methods and systems are also provided that are capable of determining the distribution of nanowires of a particular pattern to determine the mixing between or leakage from fluid reservoirs.
Abstract:
Vorrichtung zur Messung von Nanopartikeln (1) in einer Flüssigkeit (2), umfassend eine Lichtquelle (3), einen Kanal (4) zur Aufnahme der Flüssigkeit (2), wobei der Kanal (4) zumindest abschnittsweise für von der Lichtquelle (3) emittiertes Licht durchlässig ist und eine Kanalhöhe (5) aufweist, die Vorrichtung weiters umfassend einen optischen Aufbau (6) und einen zweidimensionalen Detektor (17) zur Aufnahme einer Serie von vom optischen Aufbau (6) erzeugten Bildern, wobei die Lichtquelle (3), der Kanal (4) und der optische Aufbau (6) in einer Dunkelfeldanordnung vorliegen, um Licht, das von der Lichtquelle (3) emittiert und an den Nanopartikeln (1) gestreut wird, durch den optischen Aufbau (6) mit dem Detektor (17) aufzunehmen, wobei Positionen von Beugungsbildern des an den Nanopartikeln (1) gestreuten Lichts (21) auf dem Detektor (17) bestimmbar sind. Um die Bestimmung langer Trajektorien (26, 27) der Nanopartikel (1) zu ermöglichen, die Kanalhöhe (5) und der optische Aufbau (6) so ausgelegt sind, dass die Schärfentiefe DOF des optischen Aufbaus (6) mindestens 10%, vorzugsweise mindestens 30% der Kanalhöhe (5) beträgt.
Abstract:
The invention relates to methods and apparatus for detecting properties of heterogeneous samples, including detecting properties of particles or fluid droplets in industrial processes. Embodiments disclosed include a particle characterization method, comprising: providing a fluid containing suspended particles; causing at least a first subset of the suspended particles to flow past a first two-dimensional array detector (24); illuminating the first subset of suspended particles as they flow past the first two-dimensional array detector (24) in the fluid; acquiring a plurality of images of the first subset of particles as they flow past the first two-dimensional array detector (24) in the fluid; and automatically counting the particles in the images.