Abstract:
An adjustable length catheter is disclosed. In some embodiments, the catheter is configured for use with a hub configured to couple to an end of the catheter. A cutting tool and/or a flaring tool may further be provided in connection with the catheter. In some embodiments, these tools are coupled to a hub member. The catheter may be configured such that a user, for example a medical practitioner, may cut the catheter to a desired size as part of a therapy or other procedure.
Abstract:
Devices used to pressurize, depressurize, or otherwise displace fluid are disclosed. The devices may be configured to displace fluid along a line in order to inflate or deflate a medical device, such as a balloon. The devices may be configured to withstand high pressures. One or more portions of the devices may be reinforced. Additionally, the angles at which various components interact may be configured for use with certain pressures.
Abstract:
Inflation devices and methods to inflate medical devices are disclosed. Certain embodiments enable the selective coupling of a plunger to a syringe body through manipulation of a handle. Other embodiments facilitate the generation of relatively high fluid pressures through inflation device designs that incorporate multiple plungers.
Abstract:
An inflation device including a handle mechanism configured to selectively engage and disengage threads within the device. In some instances the threads are configured to couple a plunger to a syringe body. The handle mechanism may be configured to (1) provide a mechanical advantage and (2) change the location and direction of the input force, thereby making the device easier to use.
Abstract:
An inflation device that may comprise multiple plungers is disclosed. The inflation device may have multiple configurations wherein certain plungers are locked with respect to a body of the inflation device while others are configured to be displaceable within the body. Each plunger may be configured with a different effective surface area, allowing a practitioner to vary the amount of force required to attain certain pressures.
Abstract:
Torque devices are disclosed for controlling insertion of medical devices into a lumen of a patient. The torque devices allow for modulation of the speed of rotation of the medical devices. Methods related to the torque devices are also disclosed.
Abstract:
A catheter anchor device for use with a catheter includes an adhesive layer configured to be secured to the skin of the patient proximate the catheter insertion site, a stationary base secured to the adhesive layer, a rotatable ring coupled to the stationary base and circumscribing the stationary base such that the rotatable outer ring can be rotated by the user relative to the stationary base, a first suture including a loop portion and first and second ends, the loop portion looping around a catheter when the anchor device is in place relative to the catheter insertion site, a suture retention assembly maintaining the position of the sutures to minimize disruption of the sutures before deployment of the sutures, and a pull handle including first and second separable pull tabs, the pull handle being coupled to the first and second ends of the first suture, the pull handle being configured such that actuation of the pull handle actuates first suture to secure the catheter relative to the rotatable ring.
Abstract:
Hub assemblies that include a first hub and a second hub can be used to selectively couple and uncouple medical device components to and from each other without rotating the first hub relative to the second hub. Some hub assemblies can include a dilator that includes a dilator hub and an introducer sheath that includes an introducer sheath hub.
Abstract:
An inflation device comprising a housing configured to receive a sensor assembly is disclosed. In some embodiments, the sensor assembly may be coupled to the housing through use of a snap fit-type connection. Further, the working fluid of the inflation device may be in direct communication with the pressure sensor, without the use of secondary fluids such as gels.
Abstract:
A catheter securement device which automatically deploys one or more sutures to secure a catheter without requiring the practitioner to manually suture the catheter to the self-suturing anchor device. A ratchet mechanism having one or more rotatable ratchet members which pivot and a ratchet member engagement spring which maintains contact between the teeth of the rotatable ratchet member and the teeth of the ratchet ring. An O-ring is provided to maintain the position of the sutures to minimize disruption of the sutures before deployment of the sutures. In one embodiment, a stationary base of the anchor device comprises a single molded member. In another embodiment a method of manufacturing the catheter anchor device comprising welding a rotatable ring and one or more bearing members of the catheter anchor device through access bores in the stationary base.