Abstract:
A material comprising positively and negatively charged nanoparticles, wherein one of said nanoparticles contained a magnetically responsive element, are combined with a support molecule, which is a long natural or synthetic molecule or polymer to make a magnetic nanoparticle assembly. When the magnetic nanoparticle assembly is combined with cells, it will magnetize those cells. The magnetized cells can then be washed to remove the magnetic nanoparticle assembly and the magnetized cells manipulated in a magnetic field.
Abstract:
Systems and methods generally useful in medicine, cellular biology, nanotechnology, and cell culturing are discussed. In particular, at least in some embodiments, systems and methods for magnetic guidance and patterning of cells and materials are discussed. Some specific applications of these systems and methods may include levitated culturing of cells away from a surface, making and manipulating patterns of levitated cells, and patterning culturing of cells on a surface. Specifically, a method of culturing cells is presented. The method may comprise providing a plurality of cells, providing a magnetic field, and levitating at least some of the plurality of cells in the magnetic field, wherein the plurality of cells comprise magnetic nanoparticles. The method may also comprise maintaining the levitation for a time sufficient to permit cell growth to form an assembly.
Abstract:
Cells are grown in 3D culture and topological features obtained by photomicrography are correlated to cell viability and cell cell interactions.