Abstract:
An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.
Abstract:
A glass sheet has an electrically conductive film having a sheet resistance in the range of 9.5 to 14.0 ohms/square; an emissivity in the range of 0.14 to 0.17 and an absorption coefficient of greater than 1.5 x103cm-1 in the wavelength range of 400-1100 nanometers, and a surface roughness of less than 15 nanometers Root Means Square. A glass sheet of another embodiment of the invention has an electrically conductive film having a phosphorous-fluorine doped tin oxide pyrolytically deposited film on the surface of the glass sheet, wherein the ratio of phosphorous precursor to tin precursor is in the range of greater than 0-0.4. The coated glass sheets of the invention can be used in the manufacture of multi sheet insulating units, OLEDs and solar cells.
Abstract:
A float glass system (10) includes a float bath (14) having a pool of molten metal (16). A chemical vapor deposition coater (32) is located in the float bath (14) above the pool of molten metal (16). The coater (32) includes at least one low-coherence interferometry probe (38) located in or on the coater (32) and connected to a low-coherence interferometry system (36). Another low-coherence interferometry probe 138 can be located outside an exit end of the float bath (14) and connected to the same or another low-coherence interferometry system (36).
Abstract:
A coated article includes a pyrolytic applied transparent electrically conductive oxide film of niobium doped titanium oxide. The article can be made by using a coating mixture having a niobium precursor and a titanium precursor. The coating mixture is directed toward a heated substrate to decompose the coating mixture and to deposit a transparent electrically conductive niobium doped titanium oxide film on the surface of the heated substrate. In one embodiment of the invention, the method is practiced using a vaporized coating mixture including a vaporized niobium precursor; a vaporized titanium precursor, and a carrier gas to deposit a niobium doped titanium oxide film having a sheet resistance greater than 1.2 and an index of refraction of 2.3 or greater. The chemical formula for the niobium doped titanium oxide is Nb:TiOX where X is in the range of 1.8-2.1.