Abstract:
Disclosed is a method of treating a substrate. The surface is contacted with a sealing composition comprising a lithium cation; and optionally, with conversion composition comprising a cation of a lanthanide, a Group IIIB, and/or a Group IVB metal. The conversion composition is applied to provide a film on the substrate surface resulting in a level of the lanthanide, Group IIIB metal, and/or Group IV metal thereon of at least 100 counts greater than on a surface of a substrate that does not have the film thereon as measured by X-ray fluorescence (measured using X-Met 7500, Oxford Instruments; operating parameters 60 second timed assay, 15Kv, 45μA, filter 3, T(p) = 1.5μs for lanthanides, Group IIIB metals, and Group IVB metals except zirconium; operating parameters 60 second timed assay, 40Kv, 10μA, filter 4, T(p) = 1.5μs for zirconium). A substrate obtainable by the methods also is disclosed.
Abstract:
Disclosed is a method for treating an anodized metal substrate, including contacting at least a portion of the substrate surface with a sealing composition having a pH of 9.5 to 12.5 and comprising a lithium metal cation. Also disclosed is a system that includes a sealing composition having a pH of 9.5 to 12.5 and comprising a lithium metal cation and an aqueous composition for contacting a surface of the metal substrate following contacting with the sealing composition. Also disclosed are substrates treated with the system and method.
Abstract:
Disclosed is a method of making a treatment composition. A lithium cation and carbon dioxide are combined in an aqueous medium to form the treatment composition comprising lithium carbonate in situ. Also disclosed is a system and method for maintaining a treatment bath formed from a treatment composition comprising lithium carbonate. Carbon dioxide and/or a lithium salt are supplied to the bath in an amount sufficient to maintain the pH of the treatment bath at 9.5 to 12.5, lithium in an amount of 5 ppm to 5,500 ppm (calculated as lithium cation) and carbonate in an amount of 15 ppm to 25,000 ppm (calculated as carbonate) based on total weight of the treatment bath. Sustrates treated with the composition, system and method also are disclosed.
Abstract:
A curable film-forming composition is provided, comprising: (1) a curable, organic film-forming binder component; and (2) a corrosion inhibiting component comprising a lithium silicate, present in the curable film-forming composition in an amount of 0.1 to 4.5 percent lithium by weight. Also provided are coated metal substrates, including multilayer coated metal substrates, comprising the above composition. Also provided is a multilayer coated metal substrate comprising: (a) a metal substrate; (b) a first curable film-forming composition applied to said metal substrate; and (c) a second curable film-forming composition applied on top of at least a portion of the first curable film-forming composition. The first and second curable film-forming compositions independently comprise: (1) a curable, organic film-forming binder component; and (2) a corrosion inhibiting component comprising lithium silicate, magnesium oxide and/or an azole.
Abstract:
The present invention is directed to an addition polymer comprising an addition polymer backbone; at least one moiety comprising a phosphorous acid group, the moiety being covalently bonded to the addition polymer backbone by a carbon-carbon bond; and at least one carbamate functional group. The present invention is also directed towards methods of making the addition polymer, aqueous resinous dispersions and electrodepositable coating compositions comprising the addition polymer, methods of coating a substrate and coated substrates.
Abstract:
The present invention is directed to a phosphated epoxy resin comprising at least one terminal group comprising a phosphorous atom covalently bonded to the resin by a carbon-phosphorous bond or by a phosphoester linkage; and at least one carbamate functional group. The present invention is also directed towards aqueous resinous dispersions comprising the phosphated epoxy resin, methods of coating a substrate, coated substrates, and methods of making a phosphated epoxy resin.
Abstract:
A substrate coated at least in part with an epoxy coating composition, wherein the substrate is not coated with an organic coating prior to the application of the epoxy coating composition is disclosed, as are methods for making such a substrate.
Abstract:
A coating comprising MgO, amino acid and a film-forming resin are disclosed as are methods of curing such a coating to coat at least a portion of a substrate and a substrate coated thereby.
Abstract:
A coating/sealant system that includes a coating and a sealant deposited over at least a portion of the coating, in which the coating includes a reaction product formed from reactants comprising a phosphated epoxy resin and a curing agent, and the sealant includes a sulfur-containing polymer.