Abstract:
A method for detecting faulty laying down of an optical cable exhibiting a measured cut-off wavelength is described. The method comprises: providing an optical cable for transmitting optical signals including at least one single-mode optical fibre having an attenuation equal to or larger than a first threshold value as measured when wound for one turn around a bending radius equal to or smaller than 5 mm at at least one predetermined test wavelength, the test wavelength being smaller than the measured cut-off wavelength, and an attenuation smaller than a second threshold value as measured when wound for one turn around a bending radius equal to at least a minimum bending radius at an operative wavelength equal to or larger than the measured cut-off wavelength; laying the optical cable, and measuring the attenuation in the at least one optical fibre at the predetermined test wavelength. An optical cable is also described which exhibits single-mode transmission and is bend- insensitive at wavelengths equal to or higher than a measured cut-off wavelength after propagation over a cable length. Preferably, the measured cut-off wavelength is 1260 nm. The optical cable comprises at least one optical fibre that is bend sensitive at a predetermined test wavelength not larger than the measured cut-off wavelength and is bend insensitive at an operative wavelength larger than the measured cut-off wavelength, where the cable operates in single-mode regime.
Abstract:
A process and an apparatus for drying and consolidating an optical fibre preform in a furnace tube comprising a heating chamber, wherein an extension tube having an extension chamber configured to house at least a length portion of the preform is removably joined to the furnace tube and the drying process starts with the preform not completely inserted into the furnace tube, an upper length portion of the preform being surrounded by the extension tube joint to the furnace tube.
Abstract:
A method of manufacturing at least one optical fibre preform comprising: providing a plurality of partially porous intermediate preforms, each partially porous intermediate preform having a longitudinal axis and comprising a respective soot intermediate clad layer formed around a respective glass core rod comprising a central core region of radius a and an inner clad region of radius b to define a first core-to-clad ratio a/b; consolidating the formed soot intermediate clad layers to form a respective plurality of intermediate glass preforms, each of the plurality of intermediate glass preforms comprising an intermediate clad region having an external radius c to define a second core-to-clad ratio a/c of from 0.20 to 0.30, and overcladding at least one intermediate glass preform by forming an overclad region surrounding the intermediate clad region to form an optical fibre glass preform, wherein consolidating comprises exposing the plurality of intermediate preforms to a consolidation hot zone of a single furnace body while rotating each of the intermediate preforms about its respective longitudinal axis.
Abstract:
The present invention relates to a method for manufacturing a preform of silica for optical fiber production, as well as to a method for the production of optical fibers comprising a step of drawing the optical fiber from such a preform of silica, the method comprising a step of vaporization of a siloxane feedstock added with a compound having the following formula (I): wherein R, R' and R'', equal or different each other, are an alkyl group having from 1 to 5 carbon atoms, and A is a saturated or unsaturated chain of atoms selected from the group consisting of carbon atom, nitrogen atom, and oxygen atom, said chain A forming with the nitrogen atom linked thereto a saturated, unsaturated or aromatic heterocyclic moiety.
Abstract:
A method of manufacturing an optical fibre preform comprising: providing a glass core rod comprising a central core region of radius a and an inner clad region of external radius b to define a first core-to-clad ratio a/b; forming an intermediate glass preform comprising an intermediate clad region surrounding the inner clad region of the glass rod and having an external radius c to define a second core-to-clad ratio a/c, and overcladding the intermediate glass preform by forming an overclad region surrounding the intermediate clad region to form an optical fibre preform, wherein the first core-to-clad ratio a/b is equal to or less than 0.40 and the second core-to-clad ratio a/c is of from 0.20 to 0.25.
Abstract:
An optical fibre preform suspending device for vertically holding an optical fibre preform by a preform handle comprising a handle enlarged-width portion is provided. The preform suspending device having a substantially cylindrical shape and comprising a housing portion having a receiving space with a front top opening and a front bottom opening and a supporting surface between the front top opening and the front bottom opening. The preform suspending device also comprises a supporting member placed on the supporting surface, for holding the handle enlarged-width portion. The supporting member is radially independent from the housing portion.
Abstract:
A method of manufacturing a glass core preform for an optical fibre comprising: providing a porous soot core preform having an outer surface and a central hole extending axially therethrough; dehydrating the porous soot core preform at a first temperature by exposing the outer surface of the preform to an atmosphere containing chlorine, and simultaneously consolidating the soot core preform and closing the central hole at a second temperature higher than the first temperature to form a glass core preform, wherein consolidating and closing comprises sequentially alternating flowing chlorine containing gas into the central hole and reducing the internal pressure of the central hole.