Abstract:
A Medium Access Control protocol software architecture which comprises a microcode component providing the protocol implementation level functions and an engine component providing hardware level functions. The Medium Access Control protocol and method for use in a network system allows for centralized management of all MAC-level services by a master device. The Medium Access Control protocol provides an improved protocol message throughput via the sequence retransmission request protocol scheme. The Medium Access Control protocol provides a reduced data transmission latency and provides dynamic allocation of data slots within a Time Division Multiple Access frame definition. The Medium Access Control protocol also provides a set of failure management functions and power control support.
Abstract:
The present invention describes a network communication system which includes a first slave transceiver configured to communicate a plurality of TDMA data packets at different data rates to a second slave transceiver. The second slave transceiver is also configured to communicate a plurality of TDMA data packets at different data rates to the first slave transceiver. A master transceiver manages data communications between the first slave transceiver and the second slave transceiver. Each transceiver includes a data modulation unit, a transmitter, an antenna, and a receiver. The data modulation unit is configured to generate a plurality of signals having variable pulse repetition frequencies and different modulation techniques. The transmitter is coupled to the data modulation unit and the transmitter is configured to generate a pulse stream according to the data modulation unit. The transmitting antenna is coupled to the transmitter and the transmitting antenna is configured to transmit a plurality of ultra wide band baseband signals. The receiver is configured to detect and demodulate said ultra wide band base band signals operating at variable pulse repetition frequencies and having different modulation methods.
Abstract:
The present invention is a receiver having a radio frequency (RF) front end, a pulse detector operatively coupled to the RF front end, and a data recovery unit operatively coupled to the pulse detector. The data recovery unit is configured to receive spread spectrum RF signals having different pulse repetition frequencies and using different modulation techniques. The receiver may operate in conjunction with a transmitter as a transceiver. The receiver may also operate in a network environment in which a network of transceiver node devices comprise a first slave transceiver having a receiver configured to receive spread spectrum signals, and a second slave transceiver configured to communicate with the first slave transceiver. Additionally, a master transceiver is in communication with the first slave transceiver and the second slave transceiver. The master transceiver is configured to manage data transmissions and synchronization between the first slave transceiver and the second slave transceiver.
Abstract:
The present invention is a transmitter system comprising a data modulation unit, a transmitter unit and an antenna. The data modulation unit is configured to generate a digital stream of pulse data which is synchronized with a master clock. The data modulation unit is configured to support pulse streams having different modulation techniques. The different modulation techniques include on-off keying and pulse amplitude modulation. The data modulation unit may be configured to include both a pulse amplitude modulation module and a pulse repetition frequency module.