Abstract:
Techniques described herein provide for the efficient usage of an RF channel for PRS transmissions by performing LBT sensing for a group of one or more vehicles (e.g., V2X vehicles) in a predetermined area by using an RSU. The RSU can determine a sequence in which an order for each vehicle in the group to transmit a respective PRS is defined, and provide the sequence to the group. The RSU may further perform the LBT functionality by listening to availability on the RF channel and, when the channel becomes available, the RSU can initiate this sequence by sending an initial PRS. This LBT sensing for a group can provide far more efficient usage of the RF channel than if LBT functionality were performed by each divisional vehicle.
Abstract:
Methods, systems, and devices for wireless communications are described. A first device may identify that a first set of transmission resources in a transmission time interval (TTI) has a higher priority at a second device than a second set of transmission resources in the TTI. The first device may identify that a message is to be transmitted from the first device to the second device via the TTI and process the message into a bit sequence based on the identification of the second set of transmission resources in the TTI, where the processing increases a likelihood that systematic bits of the message are received at the second device despite presence of the second set of transmission resources in the TTI. The first device may transmit the bit sequence to the second device via the TTI.
Abstract:
Methods, systems, and devices for wireless communications are described. Examples may include a receiving wireless device located in a first geographic zone receiving multiple signals from one or more transmitting wireless devices. The receiving wireless device may determine based on the received signals that the one or more transmitting devices are located in a second geographic zone. The receiving wireless device may determine configured transmit power information for each of the signals received from the transmitting wireless devices located in the second geographic zone. The receiving wireless device may estimate a path loss of wireless communications between the first geographic zone and the second geographic zone based on the configured transmit powers received in the signals. The receiving wireless device may communicate within the second geographic location based on the estimated path loss between the first geographic region and the second geographic region.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit a first transmission, wherein the first transmission includes information identifying a window, and wherein the UE is to transmit at least part of a second transmission in the window; and transmit at least part of the second transmission in the window. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for ranging are described. A multi-phase distributed ranging technique includes transmitting and receiving vehicle information messages during a first time interval, where the vehicle information messages include at least a vehicle identifier and resource information. The multi-phase technique further includes transmitting and receiving ranging signals during a second time interval, and determining times of arrival of received ranging signals. A centralized ranging technique includes receiving resource assignments from an access point, transmitting ranging signals according to the resource assignments, and determining times of arrival of received ranging signals.
Abstract:
Methods, systems, and devices for wireless communication are described. A transmitting device may identify resource blocks (RBs) used to transmit data in a data transmission. The transmitting device may determine a frequency width of a data channel in a frequency domain that is used to transmit the data based at least in part on the identified RBs. The transmitting device may dynamically determine an allocation of RBs used to transmit control information in a control channel. The allocation of RBs may be based on the frequency width of the data channel and may cause a frequency width of the control channel to match the frequency width of the data channel in the frequency domain. The transmitting device may transmit the control information in the control channel to indicate a location of the data channel.
Abstract:
Methods, systems, and devices are described for determining a monitoring schedule for device-to-device (D2D) synchronization signals. A synchronization cycle may be determined that includes a plurality of monitoring periods. The monitoring periods may be a time between at least two start times of sequential D2D synchronization signals to detect at least one of the D2D synchronization signals. Sub-monitoring periods may be determined based on the duration of the monitoring periods. The sub-monitoring periods may have a cumulative duration the same as the duration of the monitoring period and be scheduled to occur during different monitoring periods of the synchronization cycle.
Abstract:
Certain aspects of the present disclosure provide techniques for receiver side protection in sidelink communications. In certain aspects, a method performed by an apparatus generally includes obtaining, from a first user equipment (UE), first control information, which includes a first resource allocation information of one or more resources allocated for transmission by the first UE to the apparatus and an indication of a first cell associated with the first UE. The method generally includes obtaining, from a second UE, second control information, which generally includes a second resource allocation information of resources allocated for transmission by the second UE to the apparatus and an indication of a second cell associated with the second UE. The method generally includes determining, based on the first and second control information, potential interference from transmissions by the first UE and the second UE and taking one or more actions to mitigate the potential interference.
Abstract:
Methods, systems, and devices for wireless communications are described. A device may determine a set of parameters related to a transmission of a packet. For example, a device may determine a transmission range indication for the packet, a Quality-of-Service (QoS) of the packet, or a combination thereof. The device may then determine a resource exclusion parameter related to the transmission of the packet based in part on the set of parameters. Following the determination, the device may transmit, to one or more other devices in a wireless communications system, control signaling including the resource exclusion parameter.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may utilize priority levels associated with packets or transmissions to determine whether to transmit feedback for a received transmission. The UE may compare priority levels between a transmission subject to a feedback condition and a transmission scheduled to be received when the feedback is scheduled to be transmitted to determine whether to send the feedback. The UE may communicate with the transmitting device according to the comparison and the determining. The UE may determine signal conditions causing a NAK and determine to send the NAK based on the signal conditions.