Abstract:
Some wireless communication systems may attempt to balance frequent transmission opportunities (e.g., where the frequency of the opportunities may refer to gaps in the time domain, frequency domain, etc.) with a desire for communication reliability and/or interference diversity. In accordance with the described techniques, some such systems may apportion communicating devices into groups, where resources are strategically assigned to each group so as to reduce latency without significantly compromising communication reliability or interference diversity (e.g., by allowing a membership of the groups to cycle through all possible combinations before repeating). Such techniques may support delay-sensitive communications, channel sounding procedures, or other similar types of transmissions. Resources may be allocated based on a scheduling parameter transmitted to a user equipment (UE), which may implicitly or explicitly indicate a plurality of resource offsets to the UE.
Abstract:
Described herein are aspects related to assigning primary channels in wireless communications. An amount of available bandwidth within a radio frequency band can be determined for shared access by a plurality of operators, where each operator operates a radio access network having one of a plurality of radio communication compatibility types, and where each radio communication compatibility type defines a set of one or more compatible radio access technologies. The amount of available bandwidth can be allocated into radio compatibility type-specific bandwidth partitions for each radio communication compatibility type based on a number of the plurality of radio communication compatibility types and a number of the plurality of operators corresponding to each radio communication compatibility type. A primary channel can be assigned within at least one of the radio compatibility type-specific bandwidth partitions to at least one operator of the number of the plurality of operators.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for bandwidth expansion in channel co-existence situations. An example method generally includes determining information regarding loading of at least one of downlink (DL) or uplink (UL traffic at a first base station that can share at least some bandwidth with at least one neighbor base station, and modifying bandwidth of one or more channels used by the first base station based, at least in part, on the loading information.
Abstract:
A server initiating shut down of a transport control protocol (TCP) connection when a radio connection is terminated is problematic because a new radio connection must be established for the sole purpose of shutting down the TCP connection. Hence, network and terminal resources for establishing the radio connection are wasted. Accordingly, a method, an apparatus, and a computer program product for initiating a closing of a transport layer connection at a client are provided. The apparatus determines whether a functionality associated with the transport layer connection satisfies at least one criterion, and closes the transport layer connection when the functionality satisfies the at least one criterion while a radio layer connection is available. As a result, the TCP connection is shut down by the client before the server can activate a new radio connection for the sole purpose of terminating the TCP connection.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may perform a scan, associated with a cell selection procedure, that prioritizes a first frequency that is identified in a frequency database over a second frequency that is not identified in the frequency database. The frequency database may identify one or more frequencies associated with cells that are determined to support a multi-radio access technology (RAT) dual connectivity or that have a neighboring cell that is determined to support a standalone mode of a RAT. The UE may acquire a cell on which to camp based at least in part on performing the scan. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a synchronization signal block associated with a first channel number as part of a scan, wherein the synchronization signal block indicates a second channel number corresponding to a celldefining synchronization signal block. The UE may attempt acquisition for the celldefining synchronization signal block at an elevated priority level based at least in part on the synchronization signal block indicating the second channel number. Numerous other aspects are provided.
Abstract:
Apparatus and methods of wireless communications include, at a receiving node, receiving timing information corresponding to a traffic class identifier. The timing information being associated with a time interval for communicating data of a traffic class corresponding to the traffic class identifier. Aspects include receiving traffic data pertaining to the traffic class, determining that the traffic data was transmitted or is received outside the time interval, and then buffering the traffic data. Additionally, aspects include forwarding the traffic data in response to a next occurrence of the time interval. A transmitting node may be configured with complimentary functions.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, an access node may synchronize a clock of the access node which is associated with communication on a local area network to a frame structure of a time-synchronized wireless network. The access node may receive configuration information relating to a quality of service profile and a first set of time intervals for the clock of the access node. The access node may map the first set of time intervals for the clock of the access node to a second set of time intervals of the frame structure of the time-synchronized wireless network. The access node may communicate on the time-synchronized wireless network during one or more of the second set of time intervals. Numerous other aspects are provided.
Abstract:
Aspects of the disclosure relate to enabling new radio (NR) cellular quality of service (QoS) for non-internet protocol (IP) data sessions. In a particular aspect of the disclosure, a non-IP based protocol data unit (PDU) session is established, and a packet filter is selected based on at least one aspect of a data packet formatted in a non-IP format associated with the non-IP PDU session. A transmission of the data packet is then filtered according to the packet filter.
Abstract:
Coexistence solutions may be needed for sharing channels with multiple operators. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for sharing channels with multiple operators are provided. The apparatus may detect a conflict between a first base station and a second base station based on a coverage overlap between the first base station and the second base station. The apparatus may resolve the conflict based on a classification of the conflict, and at least one of a channel priority or a channel preference.