Abstract:
Aspects of the subject matter described in this disclosure can be implemented in a fall detection device and method. One or more motion sensors can access a user's acceleration data. The acceleration data can be segmented using a segmentation algorithm to identify a potential fall event. The segmentation algorithm can determine a cumulative sum of the acceleration data, where the cumulative sum is based on acceleration values being greater than or less than an acceleration threshold value, and a potential fall event can be identified where the cumulative sum is greater than a cumulative sum threshold value. Statistical features can be extracted from the segmented acceleration data and aggregated, and a determination can be made as to whether the potential fall event is a fall event based at least in part on the statistical features.
Abstract:
Some disclosed systems may include a microphone system having two or more microphones, an interface system and a control system. In some examples, the control system may be capable of receiving, via the interface system, audio data from two or more microphones of the microphone system, of determining a gesture location based, at least in part, on the audio data and of controlling one or more settings of the system based on the gesture location.
Abstract:
Aspects for balancing power output on the plurality of antennas for the transmission of a transport block are disclosed. In accordance with the present disclosure, a transmitter may balance the power output on a plurality of transmit antennas in a multiple-input multiple-output (MIMO) system by having a precoded data block bypass a virtual antenna mapping of the overhead channels (e.g., control channels). Additionally or alternatively, the transmitter may balance the power output on the plurality of transmit antennas by applying an inverse mapping parameter during the precoding process to the transport block to generate a plurality of inverse mapped precoded data blocks. In some examples, the inverse mapping parameter may be an inverse of the mapping parameter. Thus, in accordance with the present disclosure, precoding a transport block may include selecting a precoding weight for each of the plurality of antennas from an unrestricted precoding weight set.
Abstract:
Aspects described herein relate to selecting a rank for wireless communications using multiple transmit antenna layers. A first effective throughput achievable using a first rank and based at least in part on a first block error rate (BLER) associated with the first rank can be estimated along with a second effective throughput achievable using a second rank and based at least in part on a second BLER associated with the second rank. The first rank or second rank is selected to be used for transmitting communications over multiple transmit antenna layers based at least in part on comparing the first effective throughput to the second effective throughput, and the selection can be indicated to a transmitting entity from which the communications over the multiple transmit antenna layers are received.