Abstract:
Techniques for reducing ringing arising from L-C coupling in a boost converter circuit during a transition from a boost ON state to a boost OFF state. In an aspect, during an OFF state of the boost converter circuit, the size of the high-side switch coupling a boost inductor to the load is gradually increased over time. In this manner, the on-resistance of the high-side switch is decreased from a first value to a second (lower) value over time, which advantageously reduces ringing (due to high quality factor or Q) when initially entering the OFF state, while maintaining low conduction losses during the remainder of the OFF state. Further techniques are provided for implementing the high-side switch as a plurality of parallel-coupled transistors.
Abstract:
Techniques for dynamically generating a headroom voltage for an envelope tracking system. In an aspect, an initial headroom voltage is updated when a signal from a power amplifier (PA) indicates that the PA headroom is insufficient. The initial headroom voltage may be updated to an operating headroom voltage that includes the initial voltage plus a deficiency voltage plus a margin. In this manner, the operating headroom voltage may be dynamically selected to minimize power consumption while still ensuring that the PA is linear. In a further aspect, a specific exemplary embodiment of a headroom voltage generator using a counter is described.
Abstract:
Techniques for generating a boost clock signal for a boost converter from a buck converter clock signal, wherein the boost clock signal has a limited frequency range. In an aspect, the boost clock signal has a maximum frequency determined by Vbst / T, wherein Vbst represents the difference between a target output voltage and a battery voltage, and T represents a predetermined cycle duration. The boost converter may include a pulse insertion block to limit the minimum frequency of the boost clock signal, and a dynamic blanking / delay block to limit the maximum frequency of the boost clock signal. Further techniques are disclosed for generally implementing the minimum frequency limiting and maximum frequency limiting blocks.
Abstract:
Exemplary embodiments are directed to an electronic device for enabling a temperature of a battery unit to be sensed with a wired power charger or a wireless power. A device may include a wireless power receiver and a wired charging module operably coupled to the wireless power receiver. The device may also include an interface configured to couple to a battery unit and for selectively enabling one of the wireless power receiver and the wired charging module to determine a temperature of the battery unit.