Abstract:
Some disclosed methods involve controlling, via a control system, a light source system to emit a plurality of light pulses into biological tissue at a pulse repetition frequency, the biological tissue including blood and blood vessels at depths within the biological tissue. Such methods may involve receiving, by the control system, signals from the piezoelectric receiver corresponding to acoustic waves emitted from portions of the biological tissue, the acoustic waves corresponding to photoacoustic emissions from the blood and the blood vessels caused by the plurality of light pulses. Such methods may involve detecting, by the control system, heart rate waveforms in the signals, determining, by the control system, a first subset of detected heart rate waveforms corresponding to vein heart rate waveforms and determining, by the control system, a second subset of detected heart rate waveforms corresponding to artery heart rate waveforms.
Abstract:
An object detection system for capturing one or more sensor images of an object is provided that includes a touch system including a touch-sensitive screen and a display of a device. The object detection system also includes a sensor system including a sensor array and a processing component. The sensor array is coupled to the touch-sensitive screen, and the processing component is configured to capture one or more images of an object when the object is detected by the touch-sensitive screen. At least a portion of the sensor array overlaps with at least a portion of the touch-sensitive screen.
Abstract:
Embodiments of the present invention are directed toward providing ongoing authentication using biometric data. Fingerprints and/or other biometric data can be captured during the normal use of an electronic device, such as typing on a keyboard, and compared with associated reference biometrics to provide ongoing authentication to an application while the electronic device is being used. Comparison results may further be combined with additional physiological or behavioral biometrics to determine a level of authentication encompassing multiple biometric inputs and/or types.
Abstract:
Techniques described here use variations in the sensor to generate an identifier for the sensor. Each sensor may be comprised of sub-sensing units, called pixels that may demonstrate variation in their sensing capability from one pixel to another. Embodiments of the invention, describe a method for using the relative variance of each pixel (relative to the whole sensor or/and a portion of the sensor) in generating an identifier for the sensor. In one embodiment, the method may obtain information associated with a plurality of pixels from a sensor, detect variations in the information associated for each of the pixels from a subset of the plurality of pixels and generate an identifier for the sensor using the detected variations in the information associated with each of the pixels from the subset of plurality of pixels.
Abstract:
A method is disclosed, including obtaining an infrared representation based on a detected infrared signal and obtaining a combined representation based on a detected combined ultrasonic and infrared signal. An output representation is generated from the infrared representation and the combined representation. The output representation can be generated from a comparison between the combined representation and the infrared signal representation.
Abstract:
An apparatus may include an ultrasonic sensor array and a control system. The control system may be configured to acquire first image data generated by the ultrasonic sensor array corresponding to at least one first reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from a target object during a first acquisition time window. The control system may be configured to acquire second image data generated by the ultrasonic sensor array corresponding to at least one second reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from the target object during a second acquisition time window that is longer than the first acquisition time window. The control system may further be configured to initiate an authentication process based on the first image data and the second image data.
Abstract:
Embodiments of apparatus, computer program product, and method for verifying fingerprint images are disclosed. In one embodiment, a method of verifying fingerprint images includes receiving an inquiry fingerprint image of a user, identifying pattern characteristics of the inquiry fingerprint image, identifying minutiae characteristics of the inquiry fingerprint image, determining a weighted combination of the pattern characteristics of the inquiry fingerprint image and the minutiae characteristics of the inquiry fingerprint image, where the weighted combination comprises a pattern matching weight and a minutiae matching weight derived in accordance with a separation of a first empirical probability density function of genuine fingerprints from a second empirical probability density function of impostor fingerprints, and verifying the inquiry fingerprint image based on a set of fused scores computed using the weighted combination of the pattern characteristics of the inquiry fingerprint image and the minutiae characteristics of the inquiry fingerprint image.
Abstract:
A fingerprint sensing apparatus includes a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system (105). The control system may determine, according to the fingerprint sensor data, whether an object is positioned proximate a portion of the fingerprint sensor system (107). If the control system determines that an object is positioned proximate the portion of the fingerprint sensor system, the control system may determine whether the object is a finger or a non-finger object (109). The control system may determine whether the fingerprint sensor data includes fingerprint image information of at least an image quality threshold.
Abstract:
A wearable device may include a sensor system capable of obtaining physiological from a user's body. Some wearable devices may include a substance delivery system. A sensor system of a wearable device may include at least one "bio-assurance sensor" capable of obtaining biometric data that may be used to identify a user. For example, the bio-assurance sensor may be used to ensure that the wearable device is not removed from the user's body and/or placed on or in another user's body. In some examples, the wearable device may be used with a second device, such as a smart phone, that includes at least one "authentication sensor," such as a fingerprint sensor, that also may be used to identify a user. However, in some implementations the wearable device may include at least one authentication sensor.
Abstract:
Methods and systems of determining whether an object is alive, and therefore part of a live individual, are described. An object having an outer surface (e.g. a friction-ridge surface of a finger) and internal parts (e.g. tissue layer, papillae, blood vessels, fat, muscle, nail and bone) is scanned by a system having a transmitter, receiver and computer. One such system has a substantially planar piezoelectric transmit-layer, an ultrasonic receiver array having a plurality of receivers, and a platen. The transmit layer is caused to produce an ultrasound plane-wave traveling toward the object residing on the platen. Using the ultrasonic receiver, ultrasonic energy that has been reflected from the object is detected. The detected ultrasonic energy is analyzed to provide an analysis result, and the analysis result is compared to a template. A determination is made as to whether the analysis result and the template are similar, and the object is declared to be alive if the analysis result is determined to be similar to the template.