Abstract:
In a user equipment (UE) supporting multiple radio access technologies (RATs) and operating in an multiple-SIM multiple-active (MSMA) scenario, at least a portion of the wireless local area network (WLAN) transceiver may be used opportunistically to support the operation of the wireless wide area network (WWAN) transceiver to support the multiple subscriber identity modules (SIMs). For example, when a first SIM is in an active mode and using the WWAN transceiver for transmit and/or receive operations, at least a portion of the WLAN transceiver may be used in addition to the WWAN transceiver to support the WWAN operation of a second (or third, etc.) SIM. The WLAN transceiver may be used for transmit, receive, or both for the second SIM, while the first SIM continues to use the resources of the WWAN transceiver.
Abstract:
Aspects of the disclosure are directed to interference cancellation. A method of performing interference cancellation in a wireless device having a receiver, a coefficient controller and an analog interference cancellation (AIC) circuit includes utilizing the receiver to receive a signal; utilizing the coefficient controller to compute a first cost function value using a first set of coefficients, to compute a second set of coefficients using a first coefficient control algorithm, to compute a second cost function value using the second set of coefficients, to compare the second cost function value with the first cost function value, and to determine whether to apply the first set or the second set of coefficients based on the comparison; and utilizing the AIC circuit to apply the first or second set of coefficients to filter a reference signal and the receiver to subtract the filtered reference signal from the received signal for interference cancellation.
Abstract:
A user equipment (UE) may receive a wireless wide area network (WWAN) signal on a first antenna. The UE may process the WWAN signal with a portion of a WWAN receive chain of a WWAN module of the UE. The WWAN signal may be routed from the WWAN receive chain to a wireless local area network (WLAN) receive chain of a WLAN module of the UE. The UE may then process the WWAN signal with a portion of the WLAN receive chain.
Abstract:
A user equipment (UE) may communicate over a first wireless wide area network (WWAN). The first WWAN may be supported by a first subscriber identity module (SIM) of the UE. The UE may also communicate simultaneously over a second WWAN supported by a second SIM. The UE may process the second WWAN communication with a portion of a WWAN module and a portion of a wireless local area network (WLAN) module.
Abstract:
Methods, systems, and devices are provided that may address problems pertaining to effective transmit power control of a communications device operating in a wireless communications system. Some techniques may identify a trend in the transmit power control (TPC) commands and may adapt a TPC step size as a result. Other techniques may be utilized in which transmit power control is based on multiple interference estimates in a frame slot. Having multiple interference estimates at sub-slot intervals may provide additional transmit power control by allowing more transmit power adjustments, or more appropriate adjustments, for each slot. Metric calculations may be performed on one or more techniques to determine appropriate TPC operations.
Abstract:
Systems and methods are provided for selecting transmission parameters used in the transmission of a communication signal in a wireless communications device. In one embodiment, a computer-implemented method for determining a convolutional code constraint length and/or a modulation type is provided. The method includes obtaining a channel condition for a channel associated with transmission of the communication signal. Based at least in part on the channel condition, the method includes selecting a convolutional code constraint length and/or a modulation type for transmitting the communications signal. In some embodiments, the method also includes selecting a data rate for transmitting the communications signal.
Abstract:
An example method may include receiving, by a computing device, control plane signaling associated with a first service to be performed by a first communication device, wherein the computing device is within a radio access network (RAN) and is in limited communication with a core network via a backhaul connection that is constrained due to a backhaul bottleneck condition. The example method may include conditionally permitting, by the computing device, a first feature of the first service based at least in part on the backhaul bottleneck condition. Another example method may include receiving, by a computing device, control plane signaling associated with a service to be performed by a first communication device, wherein the computing device is within a RAN and is in limited communication with a core network via a backhaul connection that is constrained due to a backhaul bottleneck condition.
Abstract:
An access point may control reporting configurations based on current power state of a cell in wireless communications network. The first cell may provide reporting configuration instructions to a second cell, instructing selection between at least two defined configurations for reporting system information or load information from the second cell, based on whether the first cell is in a powered up state or a powered down state. The first cell may transmit notifications to the second cell indicating when the first cell is transitioning to a current power state, which may be one of the powered up state or the powered down state. The first cell may select one of the at least two configurations for interpreting reporting data received from the second cell, based its current power state, to obtain the system information or the load information from the second cell.
Abstract:
Systems and methods for decreasing the amount of information sent on a feedback channel are disclosed. Various forms of spectral binning may be used to reduce the amount of information sent on the feedback channel. The systems and methods may be applicable to wideband communication systems, ultra-wideband communication systems, and/or other communication system using multiple carrier frequencies (e.g., tones).
Abstract:
Low-power transmitter and/or receiver devices are provided by sacrificing time and/or frequency diversity in exchange for lower power consumption. When channel conditions indicate that time and/or frequency spreading are unnecessary for transmissions, a transmitter may enter into a power-conservation mode in which transmissions are performed using a time gating scheme or a time repetition scheme. In the time gating scheme, symbols are transmitting just once, rather than a plurality of times, but with increased transmission power. In the time repetition scheme, copies of the same symbol are transmitted a plurality of times on the same frequency on different symbol transmission periods, instead of being retransmitted on different frequencies on different symbol transmission periods. Consequently, the symbol can be generated once and stored for subsequent retransmission, thereby allowing some of the transmitter/receiver chain components can be operated at a lower duty cycle or processing speed to conserve power.