Abstract:
A method for performing a data session via a Wi-Fi access of a user equipment (UE) in a cellular network is provided. The method includes maintaining a look-up table including at least an entry, the entry including a Wi-Fi identifier of a Wi-Fi access point (AP) and location information of the Wi-Fi AP, determining whether a user preference for a Wi-Fi connection is set to ON or OFF, checking whether at least one matched entry of the look-up table is found based on current location information of the UE, scanning to discover the Wi-Fi AP, connecting to a Wi-Fi AP corresponding to the matched entry based on a result of the determining, and performing a data session via a Wi-Fi access to the connected Wi-Fi AP.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). Next generation of wireless cellular operation is expected to be deployed in higher frequency above 6 GHz (eg. 10 GHz ~ 100 GHz, also called mmWave and/or cmWave) due to availability of large amount of spectrum bandwidths. The physical layer of wireless cellular system in both DL and UL operating in mmWave/cmWave would be based on new air-interface different from that of LTE-A air-interface because the radio characteristics is different for mmWave/cmWave bands. The wireless system deployed in mmWave/cmWave system is expected to employ DL beam sweeping on broadcast control information to provide cell coverage to the UE which would result in excessive signaling overhead.
Abstract:
Disclosed are a method and apparatus for controlling interference between Internet of Things (IoT) devices. The method for controlling interference between IoT devices includes: selecting a device that will execute interference avoidance among devices that are capable of performing an inter-thing communication by taking a traffic type into consideration; and receiving interference avoidance information required for the interference avoidance from the device that will execute the interference avoidance. The interference avoidance information includes offset information representing a starting time.
Abstract:
Methods and apparatus are provided for constructing scheduling assignments for transmission, by a User Equipment (UE), of data signals over a single contiguous bandwidth and multiple non-contiguous clusters of contiguous bandwidth. The scheduling assignments for each transmission structure are designed to always result into the same maximum number of decoding operations the UE needs to perform to receive the scheduling assignments. The data signal transmission over the single contiguous bandwidth can be with or without frequency hopping and the data signal transmission over the multiple non-contiguous clusters of contiguous bandwidth may always be without frequency hopping.
Abstract:
A wireless communication network comprising a plurality of base stations capable of wireless communication with a plurality of subscriber stations within a coverage area of the network, wherein at least one of the plurality of base stations is capable of: determining a multiplexing scheme for multiplexing a frequency-selective channel quality information/precoding matrix index (FS CQI/PMI) feedback report with a wideband channel quality information/precoding matrix index (WB CQI/PMI) feedback report and a rank information (RI) report on a physical uplink control channel; transmitting the multiplexing scheme to a subscriber station; and receiving, from the subscriber station, an FS CQI/PMI feedback report multiplexed with a WB CQI/PMI feedback report and a RI report on the physical uplink control channel according to the multiplexing scheme.
Abstract:
A quantization method of transmission of channel quality information (CQI) includes measuring two measurements SINRs and calculating a difference (i.e., Delta SINR)between the two measurements of the SINRs; determining a CQI base (base channel quality information) based on one of the two measurements SINRs and a known quantization table for the CQI base , and simultaneously receiving cell-specific or UE-specific parameters transmitted from a base station and configuring a quantization table defining a mapping method of CQI delta (delta channel quality information) and the Delta SINR and determining the CQI delta based on the obtained Delta SINR and the configured quantization table; and transmitting the resulting CQI delta and CQI base .
Abstract:
The present invention provides an apparatus and method for transmitting and receiving packet data in a mobile communication system supporting Hybrid Automatic Repeat reQuest (HARQ), and in particular, provides a method and apparatus for performing HARQ retransmission on a packet received through persistent resources where no HARQ process identifier is transmitted. The invention provides HARQ soft combining by providing a mapping relation between a packet received through persistent resources and a retransmitted HARQ packet. In addition, when there are several HARQ packets received through persistent resources at an arbitrary timing, the invention controls to determine with which packet an arbitrary retransmission packet should be combined, thereby allowing the corresponding processor to perform correct soft combining. Therefore, the invention can improve HARQ performance of persistent resources without increasing complexity of the reception apparatus.
Abstract:
A method and apparatus for transmitting a pilot signal in a wireless communication system. A reference cell scrambling code or one of a plurality of additional cell scrambling codes is selected for each combination of one of a plurality of first scrambling codes (PSCs) applied to a first synchronization channel (P-SCH) and one of a plurality of second scrambling codes (SSCs) applied to a second synchronization channel (S-SCH). It is determined whether to transmit the pilot signal using the reference cell scrambling code or one of the plurality of additional cell scrambling codes. The reference cell scrambling code or the additional cell scrambling code is generated according to the determination. The pilot signal is transmitted using the generated reference cell scrambling code or the additional cell scrambling code.
Abstract:
Provided is a method for transmitting an uplink Channel Sounding (CS) Reference Signal (RS) channel in a wireless communication system. The method includes transmitting symbols of the CS RS channel through an entire system band in a previously selected at least one of Long Blocks (LBs) constituting one time slot of a sub frame; and transmitting symbols of control channels through a predetermined band in LBs remaining after symbols of the CS RS channel are applied in the time slot, by applying an orthogonal sequence determined according to the number of LBs to which symbols of the CS RS channel are applied.
Abstract:
A transmission apparatus in a Multiple Input Multiple Output (MIMO)-based wireless communication system. The transmission apparatus includes at least two antenna groups each having at least two antennas, wherein the antenna groups are spaced apart by a first distance and transmit antennas in each antenna group are spaced apart by a second distance which is shorter than the first distance. A channel coding and modulation unit channel-codes and modulates a desired transmission data stream. A precoding unit precodes the channel-coded and modulated signal separately for each antenna group and each antenna in the same antenna group. Thereafter, a transmission processing unit transmission-processes the output signal from the precoding unit.