Abstract:
The present invention generally provides a method for increasing the dispersibility of an anionic molecule of interest by (A) reacting the anionic molecule A of interest onto the surface of a cationically modified substrate ([S S W ]Q Q ) having a high surface area. The present invention further provides for the resulting compositions whereby an anionic molecule of interest has been incorporated onto the surface of a cationically modified high surface area substrate and where the resulting anion/cationically modified substrate composition (such as an anion/organoclay composition) experiences greater dispersibility in a target application system than the anionic molecule of interest alone experiences in that same application system. The method of the present invention further serves to substantially reduce the water solubility of the anionic molecule of interest by incorporating it into a cationically modified high surface area substrate such as an organoclay.
Abstract:
A method for treating polytetrafluoroethylene (PTFE) in its reactor latex form to produce a dry submicron PTFE powder that remains stable without rheology modifiers, surfactants, wetting agents, pH adjusters or other stabilizing additives. Reactor latex PTFE formed during an emulsion polymerization process can be irradiated, with an electron beam or gamma rays, during or after the polymerization to form a product where the dry submicron PTFE powder is free-flowing, tends not to self-agglomerate and tends not to dust into the air upon handling so that the PTFE is readily dispersible when placed in a desired application system or medium.
Abstract:
The present invention generally provides a method for increasing the dispersibility of an anionic molecule of interest by (A) reacting the cationic molecue C+ of interest onto the surface of a cationically modified substrate ([Q Q ]) having a high surface area. The present invention further provides for the resulting compositions whereby a cationic molecule of interest has been incorporated onto the surface of cationically modified high surface area substrate and where the resulting cation/ cationically modified substrate composition (such as a cation/organoclay composition) experiences greater dispersibility in a target application system than the anionic molecule of interest alone experiences in that same application system. The method of the present invention further serves to substantially reduce the water solubility of the cationic molecule of interest by incorporating it into a cationically modified high surface area substrate such as an organoclay.
Abstract:
The present invention generally describes one ore more apparatuses and various methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps, more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
Abstract:
The present invention generally describes one ore more apparatuses and various methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps, more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.