MULTI-LAYER AGGREGATION FOR OBJECT DETECTION
    3.
    发明申请
    MULTI-LAYER AGGREGATION FOR OBJECT DETECTION 审中-公开
    多层聚集对象检测

    公开(公告)号:WO2016025189A1

    公开(公告)日:2016-02-18

    申请号:PCT/US2015/043057

    申请日:2015-07-31

    Abstract: Object detection (58) uses a deep or multiple layer network (72-80) to learn features for detecting (58) the object in the image. Multiple features from different layers are aggregated (46) to train (48) a classifier for the object. In addition or as an alternative to feature aggregation from different layers, an initial layer (72) may have separate learnt nodes for different regions of the image (70) to reduce the number of free parameters. The object detection (58) is learned or a learned object detector is applied.

    Abstract translation: 对象检测(58)使用深层或多层网络(72-80)来学习用于检测(58)图像中的对象的特征。 来自不同层的多个特征被聚合(46)以训练(48)对象的分类器。 另外或作为来自不同层的特征聚合的替代,初始层(72)可以具有用于图像(70)的不同区域的单独的学习节点,以减少自由参数的数量。 学习对象检测(58)或应用学习对象检测器。

    METHOD AND SYSTEM FOR LANDMARK DETECTION IN MEDICAL IMAGES USING DEEP NEURAL NETWORKS
    4.
    发明申请
    METHOD AND SYSTEM FOR LANDMARK DETECTION IN MEDICAL IMAGES USING DEEP NEURAL NETWORKS 审中-公开
    使用深层神经网络的医学图像中LANDMARK检测的方法和系统

    公开(公告)号:WO2016182551A1

    公开(公告)日:2016-11-17

    申请号:PCT/US2015/030084

    申请日:2015-05-11

    CPC classification number: G06K9/4628 A61B8/52 G06K9/627 G06K2209/05 G06T7/0012

    Abstract: A method and system for anatomical landmark detection in medical images using deep neural networks is disclosed. For each of a plurality of image patches centered at a respective one of a plurality of voxels in the medical image, a subset of voxels within the image patch is input to a trained deep neural network based on a predetermined sampling pattern. A location of a target landmark in the medical image is detected using the trained deep neural network based on the subset of voxels input to the trained deep neural network from each of the plurality of image patches.

    Abstract translation: 公开了一种使用深层神经网络的医学图像中解剖学标记检测的方法和系统。 对于以医学图像中的多个体素的相应一个为中心的多个图像补丁中的每一个,基于预定的采样模式,将图像补片内的体素子集输入训练的深层神经网络。 使用经训练的深层神经网络,基于从多个图像块中的每一个输入到经过训练的深层神经网络的体素子集来检测医学图像中的目标地标的位置。

Patent Agency Ranking