Abstract:
Изобретение относится к области авиации, в частности, к системам управления лопастями несущих винтов. Автомат перекоса многороторного летательного аппарата с жестким креплением лопастей состоит из основания, к которому болтами крепится внутренняя стойка, на которую с помощью опорных подшипников и упорного подшипника установлен несущий вращающийся цилиндр. С наружной стороны цилиндра закреплена ведомая шестерня, к которой через ведущий вал с ведущей шестерней осуществляется подвод энергии от двигателя. Отдельный привод выполнен для управления стопором вращения несущего вращающегося цилиндра. Внутри стойки находятся резьбовой вал управления общим шагом, на нижней части которого находится червячная шестерня и червячный вал от электродвигателя с редуктором. При вращении резьбового вала резьбовая часть поднимает или опускает г-образный ползун управления общим шагом. Вращающаяся обойма через шаровые опоры и тяги также передает управляющее воздействие к лопастям, которые крепятся к несущему вращающемуся цилиндру через опорно-упорные подшипники, между которыми располагается механизм доворота лопасти.
Abstract:
Изобретение относится к авиации, а именно, к конструкции автомата перекоса несущего ротора-крыла комбинированного вертолета-самолета. Автомат перекоса состоит из основания, к которому болтами крепится внутренняя стойка, на которую с помощью опорных подшипников и упорного подшипника установлен несущий вращающийся цилиндр. С наружной стороны цилиндра закреплена ведомая шестерня, к которой через ведущий вал с ведущей шестерней осуществляется подвод энергии от двигателя. Ведущий вал расположен в подшипниках. Еще один привод выполнен для управления стопорением вращения несущего вращающегося цилиндра. Управляющее воздействие через тяги передается на наружную обойму верхней тарелки и затем на внутреннюю обойму верхней тарелки, также соединенной через карданное соединение со скользящей втулкой и тягой к переворотной лопасти-крылу. В центральной части лопасти-крыла находится механизм поворота переворотной лопасти, с обоих сторон которого находятся опорно- упорные подшипники. Через подшипники маховых движений лопасти соединены лопасть-крыло и несущий вращающийся цилиндр. Такое выполнение позволяет увеличить скорость горизонтального полета летательных аппаратов вертикального взлета и посадки.
Abstract:
Systems, devices, and methods that may include: determining one or more take-off variables (700) for a vertical take-off and landing (VTOL) aerial vehicle (300); increasing an altitude of the VTOL aerial vehicle to a first altitude (706), where increasing the altitude comprises substantially vertical flight of the VTOL aerial vehicle; performing a first pre-rotation check of the VTOL aerial vehicle (708); adjusting a pitch of the VTOL aerial vehicle to a first pitch angle via motor control (710); adjusting the pitch of the VTOL aerial vehicle to a second pitch angle via at least one of: motor control and one or more effectors (712); and adjusting the pitch of the VTOL aerial vehicle to a third pitch angle via the one or more effectors (714), where the third pitch angle is substantially perpendicular to a vertical plane.
Abstract:
An aircraft is provided and includes an airframe, a main rotor assembly operably disposed at an upper portion of the airframe to provide lift, a propulsor assembly operably disposed at a tail portion of the airframe to provide thrust and a control system. The control system includes a mono-cyclic swashplate assembly that is translatable in a translation direction to execute collective control of the propulsor assembly and rotatable about an axis defined transversely with respect to the translation direction to execute cyclic control of the propulsor assembly.
Abstract:
An improved vehicle with superior performance and reliability. The vehicle, such as an unmanned aerial vehicle, is capable of vertical takeoff and landing, uses three swashless, variable-pitch vertical lift main rotors with a yaw tail rotor system. Two rear main rotors are optionally tiltrotors, which pivot to increase forward speed without the increased coefficient of drag inherent in tilting the entire vehicle. The three main rotors are positioned in an equilateral triangular configuration, improving balance, increasing load-bearing strength, and making it more compact in size. Movements are controlled through changes in pitch of the rotors, allowing the motors to maintain constant governed rotations per minute, maximizing drivetrain efficiency. Vehicle configurations disclosed herein allow for smaller vehicle size with greater performance than prior art vehicles.
Abstract:
A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base. A method of configuring an aircraft having a set of rotors on a mission to carry a payload comprises the steps of determining properties of the payload including at least mass properties, determining the manner in which the payload will be coupled to the aircraft, determining configuration for each of the rotors in the set of rotors at least partially in consideration of the properties of the payload, and positioning the set of rotors in the configuration for the aircraft to perform the mission.
Abstract:
An aircraft is provided including an airframe, an extending tail, one or more engines supported by the airframe, and a counter rotating, coaxial main rotor assembly including an upper rotor assembly and a lower rotor assembly. A translational thrust system positioned at the extending tail. The translational thrust system providing translational thrust to the airframe. A gearbox configured to transfer power from the engine to the main rotor assembly. A flight control computer to independently control one or more of the engine, the upper rotor assembly, the lower rotor assembly, and the translational thrust system. The flight control computer, in response to at least one control command, engages or disengages the translational thrust system, while maintaining controlled powered flight.
Abstract:
Conventional bottom blade type trefoil flight vehicles have composite structures wherein a plurality of pairs of fixing plates, forward/backward adjustment blades, and left and right rotation adjustment blades are separately mounted and adjusted, and thus have difficulties in scouting and surveillance in an indoor area due to the heavy weights and the large volumes of said flight vehicles. Another conventional flight vehicle has drawbacks in that flight in the left and right directions is difficult, and an adjustment blade and a fixing plate are arranged adjacent to each other to cause mutual influences of wind and non-uniformity in the flow of wind. The present invention provides a flight vehicle characterized in that three pairs of fixing plates with fixed pitch propellers and adjustment blades are installed at an angle of 120 degrees. The present invention allows for anti-torque, stoppage, forward/backward advancing, left and right rotation, and flight in the left and right direction of flight vehicles, and scouting and surveillance in a narrow space. The flight vehicle of the present invention is simple in structure and control, lightweight, and small in size, thereby improving power efficiency.
Abstract:
A flight control system and method which determines an expected power required data in response to a flight control command of the at least one model following control law and utilizes the expected power required data to perform at least one action to control an engine speed.
Abstract:
The invention relates to a device for controlling the blades of a helicopter rotor or similar, including a blade-supporting rotor mast (1). The control device consists of a swash plate (10) extending around the rotor mast and comprising a stationary ring (11) and a rotating ring (12) which is rotationally mounted on the stationary ring and which is connected to the blades and, therefore, rotates with the rotor; and three actuators (23) which generate the controlled movement of the rotating ring both in translation in parallel to the rotor mast and angularly about axes perpendicular to the rotor mast. According to the invention, the three actuators are disposed substantially at the swash plate in the side extension of same, each actuator including a moving part (21) which is directly connected to the stationary ring in order to form therewith a sliding joint such that the movement of the moving part of one of the actuators generates the movement of the associated part of the stationary ring along an axis of the rotor mast (Z).