Abstract:
A method of evaluating potential for discomfort of a patient (2) caused by an object (4) on the patient. The method includes acquiring (6) a first thermal image (20;40) of the patient, and wearing the object for a predetermined time. The object is removed and a plurality of thermal images (16, 24, 26, 28, 30, 44, 46, 48, 50) of the patient are acquired at predetermined times. The potential for a pressure sore or discomfort is evaluated (12) based upon at least one of the time (17) needed for one of the plurality of thermal images of the patient to return to the first thermal image, size (18) of a number of areas of an epidermis having a temperature change (19) between acquiring the first thermal image and acquiring a first one of the thermal images, and the temperature change.
Abstract:
Skin-contact products with a transpiration function such as medical devices or medicinal products, of which face masks, aspirators, ventilators, breast pumps or wound dressings are examples are described especially a skin-contact product with a transpiration function with an improved microclimate at a patient interface material -skin contact area. In an embodiment a material system (10, 20, 30) is described that comprises a hydrophobic silicone base material (11, 21, 31) and a hydrophilic silicone material (12, 22, 32) that is combined with the hydrophobic base material (11, 21, 31). At least a part of the hydrophilic material (12, 22, 32) is in contact with a moist surface (50). The hydrophobic base material (11, 21, 31) provides mechanical and dynamical stability of the material system (10, 20, 30). The hydrophilic material (12, 22, 32) allows for uptake or for diffusion of moisture away from moist surface (50). The material system (10, 20, 30) is utilized to fabricate a patient interface material (41) and forehead pad (42) of a user or patient interface, such as face mask (40), for example, a patient interface mask for positive air pressure therapy. Furthermore, a novel composition for the preparation of hydrophilic silicone materials, suitable for use in the material system (10, 20, 30), is disclosed.
Abstract:
A method for removing impurities from a waste solid to provide at least a portion of a suitable crystallizer feed to a process for making crystalline sodium carbonate, bicarbonate, and/or other derivatives. The method comprises: contacting the waste solid with a leach solution to dissolve at least one impurity and dissolving the resulting leached residue. Leaching may include heap percolation. The leach solution may comprise a crystallizer purge liquor, a process waste effluent, a mine water, or mixtures thereof. The method may further comprise adding a magnesium compound to the resulting leached residue during or after its dissolution to remove another impurity. The waste solid preferably comprises a pond solid containing such impurities. The pond solid may be recovered from a pond receiving crystallizer purge liquor(s) and/or other process waste effluent(s). The pond solid may contain sodium carbonate, any hydrate thereof, sodium bicarbonate, and/or sodium sesquicarbonate. The impurities to be removed may comprise sodium chloride, sodium sulfate, silicates, and/or organics.
Abstract:
A sleep management related vending kiosk is provided that includes a main housing, a processing unit provided within the main housing, a vending apparatus provided at least partially within the main housing, the vending apparatus storing a plurality of respiratory patient interface device products and being structured to selectively vend the respiratory patient interface device products under control of the processing unit. In a further embodiment, a facial scanning module is provided at least partially within the main housing, including a scanning device for scanning a face of a patient. The processing unit is programmed to recommend and cause the vending apparatus to vend one of the respiratory patient interface device products based on the scanning of the face of the patient.
Abstract:
An airway pressure support system (2) that includes a pressure generating device (4) structured to produce a flow of gas and a component (8) such as a patient interface device (8) structured to be selectively coupled to the pressure generating device (4), wherein the pressure generating device (4) and the component (8) are structured to enable the component (8) to be to wirelessly identified by the pressure generating device (4) only when the component (8) is coupled to the pressure generating device (4). Also, a method of identifying a component (8) in an airway pressure support system (2) that includes steps of coupling the component (8) to a pressure generating device (4) of the airway pressure support system (2) and enabling the component (8) to be to wirelessly identified by the pressure generating device (4) only when the component (8) is coupled to the pressure generating device.
Abstract:
A knockdown, portable lift is relatively compact and lightweight for transport and use where there is no existing means for lifting a load between a lower surface and an upper surface or where the existing means cannot be used. Components of the lift are stored in a base portion of the lift and are assembled on site for forming a lift frame extending between the upper and lower surfaces. A platform and drive assembly are supported on the lift frame and are driven together up and down tracks on each side of the lift frame using a rotary drive, such as a hand crank or electric motor, to power the drive assembly. The drive assembly is operable by a person on or off the platform from either the upper or lower surface or traversing stairs over which the platform is moving. The drive assembly incorporates a unique overspeed braking system and a unique clutch arrangement.
Abstract:
A cushion member for a user interface device is provided. The cushion member is structured to provide a load distribution functionality responsive to the cushion member being donned by the user, wherein at least a portion of the cushion member has a local stiffness of less than or equal to 100 kPa/mm responsive to a stress increase on the cushion member of 1 kPa -15 kPa.
Abstract:
A magnesium treatment for removing water-soluble impurities in a process for making crystalline sodium carbonate, bicarbonate, or sulfite. A waste comprising such impurities is treated with a magnesium compound to form water-insoluble matter which is removed to form a purified solution. The treatment may be performed on a solution which contains the waste and optionally dissolved calcined trona. The purified solution may be used as a feedstock to form crystalline soda ash, and/or used as a reactant to produce crystalline sodium sulfite or bicarbonate via reaction with SO2 or CO2. In preferred embodiments, the waste may comprise a purge or weak liquor, a reclaimed solid, or combinations thereof. The water-soluble impurities may be silicates and/or foam-causing organics, and the waste may contain sodium bicarbonate, sodium sesquicarbonate, and/or one or more sodium carbonate hydrates, such as decahydrate.