Abstract:
A miniaturized laser package is provided comprising a standard semiconductor laser package modified to accept a solid state microchip assembly pumped by the diode laser. Standard packages described in the invention include TO and HHL packages all of which are characterized by small dimensions, well sealed housing, robust mounting features, known characterized materials and economical production and assembly techniques characteristic of the semiconductor processing industry. In particular, the microchip lasers are produced using high density techniques that lend themselves to mass production, resulting in very low unit costs. At the same time, the compact laser devices provide a solution to the problem of providing laser radiation at high beam quality and good reliability features with a variety of wavelengths and operational characteristics and low noise features not available from diode lasers yet relying primarily on standardized designs, materials and techniques common to diode laser manufacturing. The devices constructed according to methods taught by the invention can therefore be readily integrated into numerous applications where power, reliability and performance are at a premium but low cost is essential, eventually replacing diode lasers in many existing systems but also enabling many new commercial, biomedical, scientific and military systems.
Abstract:
Methods and constructions for cryogenically cooled solid state lasers are provided that allow the cooling channels to be embedded within the heat sinks used to conductively cool the laser medium. Several gain medium geometries are disclosed that are compatible with efficient and straight forward cryogenic cooling techniques using practical pump chamber designs while eliminating the need for the pump light to traverse the cryogenic layers and allowing for smooth temperature cycling. A number of active material configurations that can be generally adapted for pumping by high power diodes - including slab, thin disk, active mirror and rod geometries - are shown to be compatible with the cryogenic cooling approaches of the invention. Modeling results based on the preferred cooling configurations indicate substantial improvement in the performance of common solid state lasers, including Nd and Yb-doped lasers.