Abstract:
A solar concentrator assembly is disclosed. The solar concentrator assembly comprises a first reflective device having a first reflective front side and a first rear side, a second reflective device having a second reflective front side and a second rear side, the second reflective device positioned such that the first reflective front side faces the second rear side, and a support assembly coupled to and supporting the first and second reflective devices, the second reflective device positioned to be vertically offset from the first reflective device.
Abstract:
A PV assembly including framework, PV laminate(s), and a stiffening device. The framework includes a perimeter frame at least 10 feet in length and at least 5 feet in width. The PV laminate(s) are assembled to the perimeter frame to define a receiving zone having a depth of not more than 8 inches. The stiffening device is associated with the framework and is configured to provide a first state and a second state. In the first state, an entirety of the stiffening device is maintained within the receiving zone. In the second state, at least a portion of the stiffening device projects from the receiving zone. The stiffening device enhances a stiffness of the PV assembly in a plane of the perimeter frame, and can include rods defining truss structures.
Abstract:
A photovoltaic assembly for converting solar radiation to electrical energy is described. The photovoltaic assembly includes a first photovoltaic module, a second photovoltaic module and a coupling platform. The first and second photovoltaic module each have a first side for securing to the coupling platform. The coupling platform has a retractable locking mechanism and a retaining device. The retaining device is positioned such that the first side of the second PV module inhibits the retractable locking mechanism from releasing the first side of the first PV module. The coupling platform also includes a support member for mounting to a tracking drive system or a roof top.
Abstract:
A solar concentrator assembly is disclosed. The solar concentrator assembly comprises a first reflector facing in a first direction, a second reflector facing in a second direction, the second direction opposite the first direction, and a rotational member having a long axis transverse to the first and second directions, the rotational member disposed between and coupled to each of the first and second reflectors.
Abstract:
A photovoltaic sun tracking system including a photovoltaic assembly (64), a first mounting structure (60), and a second mounting structure (62). The photovoltaic assembly includes at least one PV cell (54) maintained by framework (58) defining a PV plane. The first and second mounting structures are mounted to a support surface and rotatably maintain the framework at first and second pivot points (160, 162), respectively, to establish a tracking axis passing through the pivot points. The tracking axis is non-parallel with the PV plane. The photovoltaic assembly can be rocked along the tracking axis to follow motion of the sun relative to the earth. One or both of the mounting structures can be relatively small, and the off -parallel tracking axis promotes increased efficiency over the course of a year.
Abstract:
Modular photovoltaic (PV) panel, system, and method of mounting. The system including a mounting flashing configured to mounted to a mounting surface and a folding PV panel. The folding PV panel including: a first subpanel including first PV cells, wherein the first subpanel extends along a first lateral plane and comprises a plurality of mounting hooks extending laterally from and affixed to a backside of the first subpanel, the mounting hooks configured to couple to the mounting flashing; a second subpanel including second PV cells, wherein the second subpanel extends along a second lateral plane, wherein the second subpanel comprises a front edge support configured to hold a front edge of the second subpanel away from the mounting surface; and a hinge assembly rotationally coupling the first subpanel and the second subpanel to allow an angle between the first lateral plane and the second lateral plane to change.
Abstract:
The area of Concentrating Solar Power (CSP) and Concentrating Photovoltaics (CPV) require reliable, robust and durable reflectors capable of withstanding different environments, weather and transportation conditions. It is therefore important to use a method for fabricating a reflector which seals a reflector edge against moisture, corrosion and contaminants and protects the edge from cracks and damage. Embodiments of this method include depositing a clear sealant over the reflector edges, extending a reflective film over the edges of the reflector then sealing from the back and laminating a flexible strip of a clear polymer such as PVB and EVA around the top edge, a bottom edge, and all side edges of the reflector. Another embodiment includes performing hemming process on a front assembly of the reflector over the edges of a back assembly forming a sacrificial layer at the back of the reflector to prevent delamination.
Abstract:
A photovoltaic device comprising an array of elongate reflector elements mounted substantially parallel to one another and transversely spaced in series, at least one of the reflector elements having an elongate concave reflective surface to reflect incident solar radiation towards a forward adjacent reflector element in the array. The at least one reflector element includes a photovoltaic assembly which is removably and replaceably mounted on the reflector element. The photovoltaic assembly includes a photovoltaic receptor to receive reflected solar radiation from a rearward adjacent reflector element. The photovoltaic assembly also includes a heat sink in heat transfer relationship with the photovoltaic receptor, thermally isolating the photovoltaic receptor, at least partially, from the reflector element.
Abstract:
A folding photovoltaic (PV) panel is described. The folding PV panel may include several subpanels interconnected by a hinge assembly. The hinge assembly may include a first section, a second section, and a third section between the first and second sections. The first section of the hinge assembly may couple to a first subpanel and the second section of the hinge assembly may couple to a second subpanel. The folding PV panel may include at least one electrical conductor extending from the first subpanel to the second subpanel. The at least one electrical conductor may be located in the hinge assembly or in a cabling assembly bridging a channel defined by edges of the first and second subpanels and the third section of the hinge assembly.
Abstract:
A solar-tracking photovoltaic (PV) system having several PV modules mounted on a torque tube is described. The torque tube may include several sections joined by a torque tube coupler. For example, the torque tube coupler may having a medial section and end sections to join to the torque tube sections. The medial section and the torque tube sections may have a same outer diameter.