Abstract:
A method for lens-free imaging of a sample or objects within the sample uses multi-height iterative phase retrieval and rotational field transformations to perform wide FOV imaging of pathology samples with clinically comparable image quality to a benchtop lens-based microscope. The solution of the transport-of-intensity (TIE) equation is used as an initial guess in the phase recovery process to speed the image recovery process. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for any focus adjustment, and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. In an alternative embodiment, a synthetic aperture approach is used with multi-angle iterative phase retrieval to perform wide FOV imaging of pathology samples and increase the effective numerical aperture of the image.
Abstract:
A method of generating a color image of a sample includes obtaining a plurality of low resolution holographic images of the sample using a color image sensor, the sample illuminated simultaneously by light from three or more distinct colors, wherein the illuminated sample casts sample holograms on the image sensor and wherein the plurality of low resolution holographic images are obtained by relative x, y, and z directional shifts between sample holograms and the image sensor. Pixel super-resolved holograms of the sample are generated at each of the three or more distinct colors. De-multiplexed holograms are generated from the pixel super-resolved holograms. Phase information is retrieved from the de-multiplexed holograms using a phase retrieval algorithm to obtain complex holograms. The complex hologram for the three or more distinct colors is digitally combined and back-propagated to a sample plane to generate the color image.