Abstract:
A refrigeration device includes a thermal transfer unit with an evaporative region, an adiabatic region, and a condensing region with a reversible valve attached to the adiabatic region. The device includes a container sealed around PCM, with a set of refrigeration coils of a compressor unit in thermal contact with the PCM. A storage region is in thermal contact with the evaporative region of the thermal transfer unit. A controller is operably connected to the reversible valve and the refrigeration compressor unit. The storage region can be used to store cold packs within a predetermined temperature range for medical outreach.
Abstract:
Generally, this disclosure relates to methods of prioritizing or directing available power to a main device, such as a temperature-stabilized and/or temperature-controlled storage container. In an embodiment, the method may include measuring electrical power available from a solar photovoltaic module array that is electrically coupled to the main device, and modulating the electrical power drawn by the main device based on the available electrical power. Available power unused by the main device may be diverted to one or more secondary devices.
Abstract:
In some embodiments, a medicinal carrier device includes: one or more sections of thermal insulation positioned to form an internal space with an adjacent first side region and an adjacent second side region; a first panel including a first phase change material positioned within the first side region of the internal space, the first side region of a size and shape to firmly contain an integral number of portable cold packs in thermal contact with the first panel; and a second panel including a second phase change material positioned within the second side region of the internal space, the second side region of a size and shape to firmly contain an integral number of portable cold packs in thermal contact with the second panel.
Abstract:
In some embodiments, a thermosiphon configured for use within a temperature-regulated storage device includes: a condenser region, including a plurality of evenly spaced condenser channels with horizontally symmetrical bifurcated branches connected to an adiabatic channel, each of the plurality of condenser channels connected at a top position to an upper channel; an evaporator region, including a plurality of evaporator channels, wherein each of the plurality of evaporator channels has a flow channel formed in a serpentine channel pattern and each subunit of the serpentine channel pattern is attached to a vapor return channel at a top of the subunit, and wherein the evaporator region has at least one lowest position connected directly to a vapor return channel; and an adiabatic region including at least one adiabatic channel connecting the evaporator channels and the condenser channels.
Abstract:
In some embodiments, a refrigeration device includes: walls substantially forming a liquid-impermeable container configured to hold phase change material internal to a refrigeration device; at least one active refrigeration unit including a set of evaporator coils positioned within an interior of the liquid-impermeable container; walls substantially forming a storage region; and a heat transfer system including a first group of vapor-impermeable structures with a hollow interior connected to form a condenser in thermal contact with the walls substantially forming a liquid-impermeable container, a second group of vapor-impermeable structures with a hollow interior connected to form an evaporator in thermal contact with the walls substantially forming a storage region, and a connector with a hollow interior affixed to both the condenser and the evaporator, the connector forming a liquid and vapor flow path between the hollow interior of the condenser and the hollow interior of the evaporator.