Abstract:
Embodiments disclosed herein include devices, methods, and systems for direct, selective, and sensitive detection of single-stranded target RNA sequences from various sources using a programed Cas13a protein. When activated by binding a target RNA sequence, the Cas13a cleaves a tether releasing a reporter molecule that may then be detected. In some embodiments, the systems, methods, and devices may include a filter or membrane that may help to separate the tethered and untethered reporter molecules. These devices, systems, and techniques allow a user to rapidly process samples that may contain the target RNA, without needing to amplify the target sequences. These devices and methods may be used to assay a wide variety of samples and target RNA sources, for the presence or absence of a specific target RNA sequence. Compositions and kits, useful in practicing these methods, for example detecting a target RNA in a biological sample, are also described.
Abstract:
Devices and systems for dry ice production are described, including a lid structure sized for placement over a storage container, an input tube sized to traverse a first opening in the lid structure and forming a flow conduit for pressurized carbon dioxide into the storage container, a vent tube sized to traverse a second opening in the lid structure and forming a flow conduit for gaseous carbon dioxide, a first end of the vent tube sized to fit into the storage container, a lower vent tube sized to fit in the storage container, the lower vent tube coupled to the first end of the vent tube and having openings to vent gaseous carbon dioxide from the storage container and into the vent tube.
Abstract:
In some embodiments, a medical-sample filtration device includes: a container including at least one wall forming an internal surface, a first aperture adjacent to a first end of the wall, and a second aperture adjacent to a second end of the wall; a movable insert positioned within the container and including an external surface of a size and shape to reversibly mate with the internal surface of the container; a positioning unit affixed to the internal surface close to the second aperture; a filter unit affixed to the second aperture; a sample conduit affixed to the filter unit; a valve unit attached to the sample conduit; and a connector operable to close the valve when the movable insert is in a predefined position relative to the container.
Abstract:
A refrigeration device includes a thermal transfer unit with an evaporative region, an adiabatic region, and a condensing region with a reversible valve attached to the adiabatic region. The device includes a container sealed around PCM, with a set of refrigeration coils of a compressor unit in thermal contact with the PCM. A storage region is in thermal contact with the evaporative region of the thermal transfer unit. A controller is operably connected to the reversible valve and the refrigeration compressor unit. The storage region can be used to store cold packs within a predetermined temperature range for medical outreach.
Abstract:
Disclosed embodiments include portable devices for cold chain storage and methods of fabricating portable devices for cold chain storage. In an illustrative embodiment, a portable device for cold chain storage includes a container defining therein a storage region. The container includes an inner cylinder, and the storage region is defined coaxially inwardly of the inner cylinder. The inner cylinder includes phase change material disposed therein, and the phase change material is in thermal communication with the storage region. The inner cylinder also includes evaporative coils disposed therein. The evaporative coils are embedded in the phase change material. The container also includes a thermally insulated outer cylinder. An outer wall of the outer cylinder is disposed radially outwardly of an outer wall of the inner cylinder.
Abstract:
Methods and devices are described for packaging a multi-monodose container including covering a molded structure with a hermetically-sealable overwrap, the molded structure including a first portion and a second portion, the first portion including a row of interconnected monodose pharmaceutical vials, each of the interconnected monodose pharmaceutical vials enclosing a dose of at least one pharmaceutical agent, the second portion affixed to the first portion and including a textured surface pattern positioned to direct gas flow between the first portion and a region adjacent to the second portion; evacuating at least a portion of air from around the molded structure, the evacuated air at least partially flowing over the textured surface pattern of the second portion; forming a hermetic seal around the row of interconnected monodose pharmaceutical vials; and separating the second portion of the molded structure from the first portion of the molded structure.
Abstract:
Embodiments disclosed herein are directed to photothermal spectroscopy apparatuses and systems for offset synchronous testing of flow assays. Methods of using and operating such photothermal spectroscopy systems are also disclosed.
Abstract:
Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.g., ingestion of a solution that induces rapid dissolution/degradation). In certain embodiments, the structure has a modular design, combining a material configured for controlled release of therapeutic, diagnostic, and/or enhancement agents with a structural material necessary for gastric residence but configured for controlled and/or tunable degradation/dissolution to determine the time at which retention shape integrity is lost and the structure passes out of the gastric cavity. For example, in certain embodiments, the residence structure comprises a first elastic component, a second component configured to release an active substance (e.g., a therapeutic agent), and, optionally, a linker. In some such embodiments, the linker may be configured to degrade such that the residence structure breaks apart and is released from the location internally of the subject after a predetermined amount of time.
Abstract:
A system for tracking airborne organisms includes an imager, a backlight source (such as a retroreflective surface) in view of the imager, and a processor configured to analyze one or more images captured by the processor to identify a biological property of an organism.
Abstract:
Regulated cooling devices are described herein that are sized, shaped and calibrated for use with a substantially thermally sealed storage container. In some embodiments, the regulated cooling devices include a cooling region, an adiabatic region, a lid region, and an electronics unit attached to the lid region.