Abstract:
Portage storage containers including controlled evaporative cooling systems are described herein. In some embodiments, a portable container including an integral controlled evaporative cooling system includes: a storage region, an evaporative region adjacent to the storage region, a desiccant region adjacent to the outside of the container, and an insulation region positioned between the evaporative region and the desiccant region. A vapor conduit with an attached vapor control unit has a first end within the evaporative region and a second end within the desiccant region. In some embodiments, the controlled evaporative cooling systems are positioned in a radial configuration within the portable container.
Abstract:
In some embodiments, a refrigeration device includes: walls substantially forming a liquid-impermeable container configured to hold phase change material internal to a refrigeration device; at least one active refrigeration unit including a set of evaporator coils positioned within an interior of the liquid-impermeable container; walls substantially forming a storage region; and a heat transfer system including a first group of vapor-impermeable structures with a hollow interior connected to form a condenser in thermal contact with the walls substantially forming a liquid-impermeable container, a second group of vapor-impermeable structures with a hollow interior connected to form an evaporator in thermal contact with the walls substantially forming a storage region, and a connector with a hollow interior affixed to both the condenser and the evaporator, the connector forming a liquid and vapor flow path between the hollow interior of the condenser and the hollow interior of the evaporator.
Abstract:
In some embodiments, a refrigeration device includes: walls substantially forming a liquid-impermeable container configured to hold phase change material internal to the refrigeration device; at least one active refrigeration unit including a set of evaporator coils positioned at least partially within the liquid-impermeable container; a unidirectional thermal conductor with a condensing end and an evaporative end, the condensing end positioned within the liquid-impermeable container; a first aperture in the liquid-impermeable container, the first aperture of a size, shape and position to permit the set of evaporator coils to traverse the aperture; a second aperture in the liquid-impermeable container, the second aperture including an internal surface of a size, shape and position to mate with an external surface of the unidirectional thermal conductor; and one or more walls substantially forming a storage region in thermal contact with the evaporative end of the unidirectional thermal conductor.
Abstract:
Methods and devices are described for packaging a multi-monodose container including covering a molded structure with a hermetically-sealable overwrap, the molded structure including a first portion and a second portion, the first portion including a row of interconnected monodose pharmaceutical vials, each of the interconnected monodose pharmaceutical vials enclosing a dose of at least one pharmaceutical agent, the second portion affixed to the first portion and including a textured surface pattern positioned to direct gas flow between the first portion and a region adjacent to the second portion; evacuating at least a portion of air from around the molded structure, the evacuated air at least partially flowing over the textured surface pattern of the second portion; forming a hermetic seal around the row of interconnected monodose pharmaceutical vials; and separating the second portion of the molded structure from the first portion of the molded structure.
Abstract:
In some embodiments, a medicinal storage container includes: a desiccant unit including external walls forming a gas-impermeable barrier around an interior desiccant region and including an aperture; a heating element; a controller operably attached to the heating element; a cooling unit; a compressor system including at least one evaporator coil unit, the compressor operably connected to the controller; a vapor conduit, the vapor conduit attached to a the desiccant unit at a first end, the vapor conduit attached to the evaporative cooling unit at a second end, the vapor conduit forming an internal, gas-impermeable passageway between the desiccant unit and the cooling unit; a vapor control unit attached to the vapor conduit and operably attached to the controller; and a medicinal storage unit including external walls encircling a medicinal storage region including a temperature sensor operably connected to the controller.
Abstract:
In some embodiments, an affixed group of pharmaceutical vials with frangible connectors includes: a plurality of pharmaceutical vials arranged as a group of pharmaceutical vials, each of the plurality of pharmaceutical vials shaped and positioned to minimize a total volume of the group of pharmaceutical vials, each of the pharmaceutical vials including at least one external side with a surface configured to reversibly mate with a corresponding external side and a surface of an adjacent pharmaceutical vial; and a plurality of frangible connectors, wherein at least one frangible connector is affixed to the surface of at least two of the plurality of pharmaceutical vials within the group of pharmaceutical vials, and at least one frangible connector is affixed to each of the plurality of pharmaceutical vials.
Abstract:
In some embodiments, a portable cooling unit for use with a storage container includes: a desiccant unit including at least one exterior wall defining an interior desiccant region, wherein the interior desiccant region is sealed from gas transfer between the interior desiccant region and a region external to the cooling unit; an evaporative cooling unit including at least one exterior wall defining an interior evaporative region, wherein the interior evaporative region is sealed from gas transfer between the interior evaporative region and the region external to the cooling unit; a vapor conduit including a first and a second end, the vapor conduit attached to the desiccant unit at the first end, the vapor conduit attached to the evaporative cooling unit at the second end, the vapor conduit forming a passageway between the interior desiccant region and the interior evaporative region; and a vapor control unit attached to the vapor conduit.
Abstract:
Methods are described for packaging a foldable container including covering a multi-monodose container in an expanded configuration with a hermetically-sealable overwrap, the multi-monodose container including a row of interconnected monodose pharmaceutical vials, each of the monodose pharmaceutical vials enclosing at least one pharmaceutical agent, the interconnected monodose pharmaceutical vials connected to one another by one or more articulating joints sufficiently flexible to form a folded configuration of the multi-monodose container; exerting a force on at least one of the monodose pharmaceutical vials; bending the one or more articulating joints to form the folded configuration of the multi-monodose container in response to the exerted force; and sealing the hermetically-sealable overwrap to form a hermetic seal around the folded configuration of the multi-monodose container.
Abstract:
Portage storage containers including controlled evaporative cooling systems are described herein. In some embodiments, a portable container including an integral controlled evaporative cooling system includes: a storage region, an evaporative region adjacent to the storage region, a desiccant region adjacent to the outside of the container, and an insulation region positioned between the evaporative region and the desiccant region. A vapor conduit with an attached vapor control unit has a first end within the evaporative region and a second end within the desiccant region. In some embodiments, the controlled evaporative cooling systems are positioned in a radial configuration within the portable container.
Abstract:
Methods, systems, and devices are described for calculating a push pressure for a pharmaceutical vial with a syringe, the method including accepting data regarding at least one parameter of the pharmaceutical vial, at least one parameter of a vial cap with a seal, at least one parameter of the syringe, and a single dose volume of a liquid pharmaceutical; calculating a volume of headspace over the liquid pharmaceutical with a computing device; calculating an ejection pressure based on the single dose volume of the liquid pharmaceutical and the volume of headspace; calculating a motive pressure based on a static force and a cross-sectional area of the syringe; defining the push pressure as the greater of the ejection pressure or the motive pressure; and reporting the push pressure to a user. The method further includes calculating a molar amount of inert gas needed in the pharmaceutical vial to generate the calculated push pressure.