Abstract:
An apparatus for producing diamond in a deposition chamber including a heat/sinking holder for holding a diamond and for making thermal contact with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, a noncontact temperature measurement device positioned to measure temperature of the diamond across the growth surface of the diamond and a main process controller for receiving a temperature measurement from the noncontact temperature measurement device and controlling temperature of the growth surface such that all temperature gradients across the growth surface are less than 20° C. The method for producing diamond includes positioning diamond in a holder such that a thermal contact is made with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, measuring temperature of the growth surface of the diamond to generate temperature measurements, controlling temperature of the growth surface based upon the temperature measurements, and growing single-crystal diamond by microwave plasma chemical vapor deposition on the growth surface, wherein a growth rate of the diamond is greater than 1 micrometer per hour.
Abstract:
In one aspect, the invention relates to a method of producing high-quality diamond comprising the steps of providing a mixture comprising hydrogen, a carbon precursor, and oxygen; exposing the mixture to energy at a power sufficient to establish a plasma from the mixture; containing the plasma at a pressure sufficient to maintain the plasma; and depositing carbon-containing species from the plasma to produce diamond at a growth rate of at least about 10 µm/hr; wherein the diamond comprises less than about 10 ppm nitrogen. The invention also relates to the apparatus, gas compositions, and plasma compositions used in connection with the methods of the invention as well as the products produced by the methods of the invention. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
Disclosed are compositions and methods for producing carbon-based films, for example, ultra smooth diamond nanostructured diamond films. Generally, the disclosed compositions can comprise a noble gas component, hydrogen, a carbon precursor, and nitrogen. Generally, the disclosed methods can comprise the steps of providing a mixture comprising a noble gas, hydrogen, a carbon precursor, and nitrogen, establishing a plasma comprising the mixture; and depositing carbon-containing species from the plasma onto the surface, thereby producing a film on the surface. Generally, the disclosed films exhibit superior average gain size, RMS surface roughness, hardness, relative diamond crystallinity, and surface adhesion. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract:
Disclosed are composites comprising a substrate, a diamond film, and a metal boride film disposed between the susbtrate and the diamond film. Also disclosed are methods for producing the composites. Generally, the disclosed composites exhibit superior hardness and wear and corrosion resistance. The disclosed methods provide a superior approach to formation of well-adhered substantially graphitic carbon free diamond films.
Abstract:
An apparatus for producing diamond in a deposition chamber including a heat/sinking holder for holding a diamond and for making thermal contact with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, a noncontact temperature measurement device positioned to measure temperature of the diamond across the growth surface of the diamond and a main process controller for receiving a temperature measurement from the noncontact temperature measurement device and controlling temperature of the growth surface such that all temperature gradients across the growth surface are less than 20 ° C. The method for producing diamond includes positioning diamond in a holder such that a thermal contact is made with a side surface of the diamond adjacent to an edge of a growth surface of the diamond, measuring temperature of the growth surface of the diamond to generate temperature measurements, controlling temperature of the growth surface based upon the temperature measurements, and growing single-crystal diamond by microwave plasma chemical vapor deposition on the growth surface, wherein a growth rate of the diamond is greater than 1 micrometer per hour.