Abstract:
Intravascular devices, systems, and methods are disclosed. In some embodiments, side-loading electrical connectors for use with intravascular devices are provided. The side- loading electrical connector has at least one electrical contact configured to interface with an electrical connector of the intravascular device. A first connection piece of the side-loading electrical connector is movable relative to a second connection piece between an open position and a closed position, wherein in the open position an elongated opening is formed between the first and second connection pieces to facilitate insertion of the electrical connector between the first and second connection pieces in a direction transverse to a longitudinal axis of the intravascular device and wherein in the closed position the at least one electrical contact is electrically coupled to the at least one electrical connector received between the first and second connection pieces.
Abstract:
Embodiments of the present disclosure are configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel. In some particular embodiments, the devices, systems, and methods of the present disclosure are configured to assess the severity of a stenosis in the coronary arteries without the administration of a hyperemic agent. In some embodiments, the devices, systems, and methods of the present disclosure are configured to assess a vessel by automatically correcting for drift in the equipment utilized to obtain measurements related to the vessel.
Abstract:
Devices, systems, and methods for visually depicting a vessel and evaluating treatment options are disclosed. A method of evaluating a vessel of a patient, comprises: obtaining intravascular data from an intravascular instrument positioned within a vessel of a patient while the intravascular instrument is moved longitudinally through the vessel from a first position to a second position; obtaining an angiographic image of the vessel while the intravascular instrument is moved longitudinally through the vessel; correlating the intravascular data from the intravascular instrument to locations on the angiographic image; and outputting an enhanced angiographic image of the vessel on a display, the enhanced angiographic image including the angiographic image overlaid with visualizations representing the intravascular data at the correlated locations. Corresponding systems are also provided.
Abstract:
Systems and methods for obtaining and processing data collected using a multi-site intravascular sensing device are provided. Some embodiments are directed to locating a structure within a vessel and performing an examination of the structure once it has been located. In one embodiment, an elongate member has a plurality of sensors and set of measurements is obtained using the plurality of sensors, the set of measurements including at least one measurement from each sensor of the plurality of sensors. The various sensor measurements are compared and a difference in a vascular characteristic is determined from the compared measurements. The location of the structure may be determined based on the adjacent sensors.