Abstract:
An endovascular stent (12) for vascular vessels which can be used to occlude the vessel or which can be used to bridge damaged areas in the vessel. The endovascular stent comprising a stent that can be permanently expanded from a first diameter to a larger second diameter. The stent can be a helically wound wire stent, each wire comprising at least two strands. The two strands being twisted. The twisted strands securing fibers to form a fabric pile (18) extending outwardly from stent, and optionally extending inwardly into the stent. In a second embodiment, the stent is enclosed with a tubular-like expandable graft. The graft having an exterior fabric pile made up of individual fibers. In both embodiments, the fibers or the pile are optionally coated with a hydrophilic polymeric gel which expands upon being wetted.
Abstract:
The present invention relates to microcatheters (8) with a detachable tip for administering liquid embolic agents. The detachable tip microcatheter for use with liquid embolic agents in treating an aneurysm comprises a body adapted to be introduced in a vascular cavity; a detachable tip portion mounted on a distal end of the body; and a detaching mechanism (16) mounted between the tip and the body for detaching the tip from the body, the tip portion being adapted to be positioned in use in the aneurysm to introduce the embolic agent into the aneurysm.
Abstract:
An endovascular stent (12) for vascular vessels which can be used to occlude the vessel or which can be used to bridge damaged areas in the vessel. The endovascular stent comprising a stent that can be permanently expanded from a first diameter to a larger second diameter. The stent can be a helically wound wire stent, each wire comprising at least two strands. The two strands being twisted. The twisted strands securing fibers to form a fabric pile (18) extending outwardly from stent, and optionally extending inwardly into the stent. In a second embodiment, the stent is enclosed with a tubular-like expandable graft. The graft having an exterior fabric pile made up of individual fibers. In both embodiments, the fibers or the pile are optionally coated with a hydrophilic polymeric gel which expands upon being wetted.
Abstract:
A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
Abstract:
The disclosed methods and devices utilize various techniques to detach the distal end of a catheter from an obstruction with minimal invasiveness and effort by the surgeon. As reflux of an embolic agent or hardening material over the catheter tip is a major causative factor in the increased morbidity/mortality of embolization procedures and also a technical limitation preventing a better cure rate, a method has been developed for the detachment of the distal end of catheters within the body, preferably with no regard to the amount of reflux, and preferably at the proximal edge of the reflux, in order to be able to make embolization procedures safer and more effective.
Abstract:
Implant devices for filtering blood flowing through atrial appendage ostiums have elastic cover and anchoring substructures. The substructures may include reversibly folding tines or compressible wire braid structures. The devices are folded to fit in catheter tubes for delivery to the atrial appendages. The devices elastically expand to their natural sizes when they are expelled from the catheter tubes. Filter elements in the covers block emboli from escaping through the ostiums. The devices with tine substructures may have H-shaped cross sections. These devices seal the appendages by pinching an annular region of ostium tissue between the cover and the anchoring substructures. The shallow deployment depth of these H-shaped devices allows use of an universal device size for atrial appendages of varying lengths. The devices may include remotely activated fixtures for refolding the tines for device recovery or position adjustment.
Abstract:
Apparatus and method are disclosed by which a hollow distal end portion of a wire may be deposited at selected sites in body passageways. The apparatus includes an elongate wire (16) (solid or hollow) having a distal end section for detachment and delivery to a target location, the wire (16) also having a discontinuity (20) located rearwardly of the distal end section for rupturing when vibrational energy is applied to the wire (16). The discontinuities may take the form of cuts (38) formed in the wire (30), reduced diameter sections (49) in the wire (40), adhesive, welded or soldered couplings between the wire (50, 55, 60) and the distal end section, or the wire (200) transitioning from the wire (200) to a large mass (204) disposed on the distal end section. A catheter (304) is coupled to or surrounds the elongate wire (302) to deliver therapeutic liquid to a target body location. The apparatus includes a vibrational energy source (400) couplable to the proximal end of the wire (16) for selectively applying vibrational energy to the wire (16) to travel to the discontinuity (20) and cause detachment of the end section.
Abstract:
A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
Abstract:
What is disclosed are medical devices comprising a rounded, thin-walled, expandable metal structure ("ballstent") and a flexible, elongated delivery device ("delivery catheter") and systems and methods of use for treating saccular vascular aneurysms with the medical devices. Ballstents comprised of gold, platinum, or silver that can be compressed, positioned in the lumen of an aneurysm, and expanded to conform to the shape of the aneurysm are disclosed. The external surface of ballstents can be configured to promote local thrombosis and to promote the growth of tissue into and around the wall of the ballstent in order to seal the aneurysm and fix the ballstent in place in the aneurysm. The wall of the ballstent can also be configured to release drugs or pharmacologically active molecules, such as those that promote thrombosis, cell proliferation, extracellular matrix deposition, and tissue growth.
Abstract:
Apparatus for delivering a medical device to a location in a patient's body includes an elongate catheter body having a proximal end and a distal end, a pod coupled with the distal end of the catheter body and adapted to house the medical device during delivery to the location and to open to release the medical device, and at least one distal actuator coupled with at least one of the pod and the medical device. The distal actuator is adapted to promote opening of the pod. A method involves advancing a pod at the distal end of an elongate catheter to the location within the body and activating an actuator coupled with the pod and/or the medical device to cause the pod to open. Opening the pod releases the medical device.