Abstract:
A surgical instrument includes a body, an ultrasonic blade, a clamp arm, and a resilient member. The body includes an electrical conductor and defines a longitudinal axis. The clamp arm is pivotably coupled with the body at a pivot assembly. The clamp arm is operable to compress tissue against the ultrasonic blade. The clamp arm includes an electrode operable to apply RF energy to tissue, wherein the clamp arm is configured to be loaded onto and removed from the body at the pivot assembly along a path that is transverse to the longitudinal axis defined by the body. The resilient member is located within the pivot assembly. The resilient member is configured to provide electrical continuity between the electrode of the clamp arm and the electrical conductor of the body.
Abstract:
Medical apparatus comprising at least one electrode (100) for generating cold plasma, said electrode (100) comprising a tail (120) and a head (110) and being covered with isolating and biocompatible mineral material, said tail (120) being the electrode portion to be connected with the corresponding handpiece (18) and said head (110) being the electrode portion (100) to be faced towards the skin of the patient, said apparatus comprising at least one electrode (100) comprising a head (110) including a spherical end (130) and/or at least one electrode (100) comprising a head (110) shaped to form a corkscrew -like element (140).
Abstract:
Methods and devices for improved precision in finding one or more nerves and then interrupting the transmission of neural signals through the target nerve. The treated nerve can be rendered incapable of transmitting neural signals for a select duration of time, where such a duration can be on a temporarily basis (e.g., hours, days or weeks) or a longer term/permanent basis (e.g., months or years). One embodiment of the apparatus includes a precise energy source system which features energy transfer elements that are capable of creating areas of nerve destruction, inhibition and ablation with precision.
Abstract:
An apparatus for operating on tissue comprises an end effector disposed at the distal end of an elongate shaft and including a first jaw and a second jaw that is selectively pivotable toward and away from the first jaw to capture tissue. A trigger is configured to move the second jaw toward and away from the first jaw. The locking mechanism in the locked state is configured to allow movement of the second jaw along a first path where a relative angle between the first jaw and the second jaw is limited to a first maximum angle. The locking mechanism in the unlocked state is configured to allow movement of the second jaw along a second path where the relative angle between the first jaw and the second jaw is limited to a second maximum angle. The second maximum angle is greater than the first maximum angle.
Abstract:
An electrosurgical generator arranged to supply radio frequency (RF) energy to fuse tissue is provided. The generator is arranged to supply RF energy through a removably coupled electrosurgical instrument to fuse tissue grasped by the instrument. The generator monitors a phase angle of the supplied RF energy and adjusts or terminates the supplied RF energy based on the monitored phase angle in comparison to predetermined thresholds and conditions to optimally fuse the tissue. The electrosurgical instrument conducts radio frequency energy to fuse tissue captured between the jaws and a blade to mechanically cut tissue between the jaws. A conductive post positioned on the jaw adjacent to the blade.
Abstract:
Devices, systems, and methods for the selective positioning of an intravascular ultrasound neuromodulation device are disclosed herein. One aspect of the present technology is directed to positioning systems for focused ultrasound devices. Some embodiments, for example, are directed to dual-balloon positioning systems. Such systems can include, for example, an elongated shaft and a therapeutic assembly and a balloon assembly carried by a distal portion of the elongated shaft. The therapeutic assembly is configured for delivery within a blood vessel. The balloon assembly can include a first balloon and a second balloon circumferentially offset from the first balloon about the elongated shaft. The first and second balloons can be selectively inflated to position an ultrasound transducer of the therapeutic assembly at a precise location within the blood vessel.
Abstract:
A medical system configured for nerve modulation can include an elongate shaft, having a distal end region and a proximal end region is disclosed. Adjacent the distal end region an ablation electrode can be disposed. The system can further include a first optical fiber, having a proximal end and a distal end, extending along an outer surface of the elongate shaft, and in turn a number of (fiber Bragg Grating) FBG sensors therein. The FBG sensors can be positioned adjacent to the ablation electrode. An optical read out mechanism can be optically coupled to the optical fiber to transmit light into the optical fiber and detect light reflected from the FBG sensor. Here, the detected light, reflected from FBG temperature sensors, encodes local temperatures at each of the FBG temperature sensors.
Abstract:
An apparatus for operating on tissue includes an end effector having a first jaw, a second jaw, a first blade, and a second blade. The second jaw pivots relative to the first jaw from an open position to a closed position. The first blade moves from a proximal position to a distal position to pivot the second jaw to the closed position. The second blade moves from a proximal position to a distal position when the second jaw is in the open position. The second blade is exposed between the first and second jaws when the second blade is in the distal position.