Abstract:
Systems and methods for performing and assessing neuromodulation therapy are disclosed herein. One method for assessing the efficacy of neuromodulation therapy includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient and delivering neuromodulation energy at the target site with the neuromodulation catheter. The method can further include obtaining a measurement related to a dimension of the renal blood vessel via a sensing element of the neuromodulation catheter. The measurement can be compared to a baseline measurement related to the dimension of the renal blood vessel to assess the efficacy of the neuromodulation therapy. In some embodiments, the baseline measurement is obtained via the sensing element of the neuromodulation catheter prior to delivering the neuromodulation energy.
Abstract:
Systems and methods for informing and evaluating neuromodulation therapy are disclosed herein. A system configured in accordance with embodiments of the present technology can include, for example, a guidewire having a proximal portion, a distal portion configured to be positioned at a target site in a blood vessel of a human patient, and a sensing element positioned along the distal portion. The sensing element can be a pressure sensing element, a flow sensing element, an impedance sensing element, and/or a temperature sensing element. The system can further include a controller configured to obtain one or more measurements related to a physiological parameter of the patient via the sensing element. Based on the measurements, the controller can determine the physiological parameter and compare the parameter to a predetermined threshold. Based on the comparison, the controller and/or the operator can assess the likelihood of the patient benefitting from neuromodulation therapy.
Abstract:
Devices, systems, and methods for the selective positioning of an intravascular neuromodulation device are disclosed herein. Such systems can include, for example, an elongated shaft and a therapeutic assembly carried by a distal portion of the elongated shaft. The therapeutic assembly is configured for delivery within a blood vessel. The therapeutic assembly can include a pre-formed shape and can be transformable between a substantially straight delivery configuration; and a treatment configuration having the pre-formed helical shape to position the therapeutic assembly in stable contact with a wall of the body vessel. The therapeutic assembly can also include a mechanical decoupler operably connected to the therapeutic assembly that is configured to absorb at least a portion of a force exerted on the therapeutic assembly by the shaft so that the therapeutic assembly maintains a generally stationary position relative to the target site.
Abstract:
A neuromodulation catheter includes an elongate shaft and a neuromodulation element. The shaft includes two or more first cut shapes and two or more second cut shapes along a helical path extending around a longitudinal axis of the shaft. The first cut shapes are configured to at least partially resist deformation in response to longitudinal compression and tension on the shaft and torsion on the shaft in a first circumferential direction. The second cut shapes are configured to at least partially resist deformation in response to longitudinal compression on the shaft and torsion on the shaft in both first and second opposite circumferential directions.
Abstract:
Devices, systems, and methods for the selective positioning of an intravascular neuromodulation device are disclosed herein. Such systems can include, for example, an elongated shaft and a therapeutic assembly carried by a distal portion of the elongated shaft. The therapeutic assembly is configured for delivery within a blood vessel. The therapeutic assembly can include a pre-formed shape and can be transformable between a substantially straight delivery configuration; and a treatment configuration having the pre-formed helical shape to position the therapeutic assembly in stable contact with a wall of the body vessel. The therapeutic assembly can also include a mechanical decoupler operably connected to the therapeutic assembly that is configured to absorb at least a portion of a force exerted on the therapeutic assembly by the shaft so that the therapeutic assembly maintains a generally stationary position relative to the target site.
Abstract:
Devices, systems, and methods for the selective positioning of an intravascular ultrasound neuromodulation device are disclosed herein. One aspect of the present technology is directed to positioning systems for focused ultrasound devices. Some embodiments, for example, are directed to dual-balloon positioning systems. Such systems can include, for example, an elongated shaft and a therapeutic assembly and a balloon assembly carried by a distal portion of the elongated shaft. The therapeutic assembly is configured for delivery within a blood vessel. The balloon assembly can include a first balloon and a second balloon circumferentially offset from the first balloon about the elongated shaft. The first and second balloons can be selectively inflated to position an ultrasound transducer of the therapeutic assembly at a precise location within the blood vessel.
Abstract:
Endovascular catheters and control wires for operating the catheters and associated systems, apparatuses, and methods are disclosed include a catheter apparatus having an elongated shaft, a therapeutic assembly at a distal portion of the shaft, and a handle at a proximal portion of the shaft. An actuator is located at the handle and operably coupled to the therapeutic assembly via a tuned control member extending through the shaft. The tuned control member includes a control wire and a tuning component attached to one another within the shaft. The tuned control member is configured to achieve a desired tuned force-displacement response by modifying the stress-strain response that a non-tuned control wire would ordinarily provide without the intervening tuning component.
Abstract:
Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
Abstract:
Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function or of vascular structures that feed or perfuse the neural fibers.
Abstract translation:本文公开了用于通过血管内通路实现肾神经调节的导管设备,系统和方法。 例如,本技术的一个方面针对一种具有被配置为递送到肾血管的多电极阵列的治疗装置。 阵列在递送状态或低轮廓状态(例如,大致笔直的形状)与展开状态(例如径向扩张的,大致螺旋形状)之间可选择性地变形。 多电极阵列的尺寸和形状被设计成使得当阵列处于展开(例如,螺旋状态)时电极或能量输送元件接触肾血管的内壁。 电极或能量输送元件被配置用于直接和/或间接地施加热能和/或电能以加热或以其他方式电调节有助于肾功能的神经纤维或供给或灌注神经纤维的血管结构。 p >
Abstract:
Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.