Abstract:
An optoelectronic sensor (01), a control method for the optoelectronic sensor(01), and a pulse monitor including the optoelectronic sensor(01). The optoelectronic sensor (01) may include a light source (10), a first receiver (20), a second receiver (30), and a phantom material layer (40) that is facing a light-emitting side of the light source (10) and at least partially overlapping with the second receiver (30).
Abstract:
The present invention relates to a device, system and a method for determining vital sign information of a subject. To provide an increased signal quality and an improved robustness of the obtained vital sign information with respect to motion and low SNR, the proposed device tries to find the linear combination of the color channels, which suppresses the distortions best in a frequency band including the pulse rate, and consequently use this same linear combination to extract the desired vital sign information (e.g. represented by a vital sign information signal such as a respiration signal or Mayer waves) in a lower frequency band.
Abstract:
An example method for performing pulse oximetry can commence with receiving at least three light signals of three different wavelengths reflected from a human tissue. The human tissue includes a pulsatile tissue and a non-pulsatile tissue. Based on the three light signals, values of at least three functions are determined. The three functions are invariant to an oxygen saturation in the pulsatile tissue and depend on location of a sensor operable to detect the three light signals and pressure of the sensor on the human tissue. Based on the values of the three functions, non-pulsatile components are analyzed for intensities of a red light signal and infrared light signal reflected from the human tissue. The non-pulsated components are removed from the intensities to allow correct estimates of a ratio of the absorption coefficients, with the ratio being used to determine the oxygen saturation in the pulsatile tissue.
Abstract:
A PPG signal may be obtained from a pulse oximeter, which employs a light emitter and a light sensor to measure the perfusion of blood to the skin of a user. However, the signal may be compromised by noise due to motion artifacts. To address the presence of motion artifacts, examples of the present disclosure can receive light information from each of two light guides, one in contact with the tissue of the user and one not in contact with the tissue of the user. First light information can be obtained from the first light guide, and second light information can be obtained from the second light guide. A heart rate signal can then be computed from the first and second light information, for example, by using blind source separation and/or cross-correlation.
Abstract:
A pressure sensor comprises an optical source configured to illuminate the tissue of a user, and an optical sensor configured to measure reflected illumination from the tissue. A compute system is configured to output a pressure between a surface of the optical sensor and the tissue as a function of the measured reflected illumination.
Abstract:
Motion artifact reduction using multi-channel PPG signals A data processing device (100, 200) is disclosed for extracting a desired vital signalcontaining a physiological information component from sensor data that includes time- dependent first sensor data (PPG1) comprising the physiological information component and at least one motion artifact component, and that includes time-dependent second sensor data that is indicative of a position, a velocity or an acceleration of the sensed region as a function of time. A decomposition unit (104, 204) decomposesthe second sensor data into at least two components of decomposed sensor data and, based on the decomposed second sensor data, provides at least two different sets of motion reference data in at least two differentmotion reference data channels. An artifact removal unit (106, 206) determinesthe vital signal formed from a linear combination of the first sensor data and the motion reference data of at least one two of the motion reference data channels.
Abstract:
The present invention relates to a monitoring device (10) comprising a light source (14) for emitting light into a body part (12) of a living being; a light sensor (18) for receiving light (16) including an ambient light component (30) and a measurement light component (32) resulting from interactions of said emitted light with said body part (12) and for generating an output signal (34), wherein a transfer function describes the relation between the output signal (34) and the received light; an ambient light cancellation unit (20) for separating the output signal (34) into a first signal portion (36) corresponding to the ambient light component (30) and a second signal portion (38) corresponding to the measurement light component (32); and an ambient light modulation removal unit (22) for compensating a variation of the ambient light component (30) by demodulating the second signal portion (38) based on the transfer function (f) and the first signal portion (36) to generate a measurement signal (40).
Abstract:
In certain embodiments, the invention relates to systems and methods for in vivo tomographic imaging of fluorescent probes and/or bioluminescent reporters, wherein a fluorescent probe and a bioluminescent reporter are spatially co-localized (e.g., located at distances equivalent to or smaller than the scattering mean free path of light) in a diffusive medium (e.g., biological tissue). Measurements obtained from bioluminescent and fluorescent modalities are combined per methods described herein.
Abstract:
A system (10) for measuring physiological signals includes a sensing element (12) for sensing a biological signal generated in a subject's body, the biological signal including a noise component, having a profile of which is at least partially known, and an information carrying component. A filter module (26) separates the noise component and the information carrying component of the biological signal from each other, the filter module generating a filtered signal from the biological signal input into the filter module (26). An amplifier (24) has an inverting input and a non-inverting input, the filter module (26) being connected to one of the inputs of the amplifier (24) for receiving the filtered signal and the sensed biological signal being input to the other of the inputs so at least the noise component of the biological signal is attenuated relative to the information carrying component. The system (10) includes a reference electrode (16) relative to which the sensing element senses the biological signal.