Abstract:
A respiratory valve, such as a positive end expiratory pressure valve, permits pressure control for respiratory apparatus such as a ventilator or positive airway pressure device. The valve may include a flexible gas passage cover. The cover may be configured with a first side surface to operatively block and open an aperture of the gas passage at a valve seat to respectively prevent and permit gas flow through the aperture defined by the valve seat. The cover may include a second side surface opposite the first surface. The second surface may include at least one drop section forming a reduction in thickness of the cover between the first surface and the second surface. The first surface may include a coating to reduce friction of a membrane material of the first surface. The rim of the valve seat may comprise a variation in height relative the flexible cover.
Abstract:
Oxygen concentrator apparatus and method of use are described herein. The oxygen concentration may include at least one canister; gas separation adsorbent disposed in at least one canister, and a compression system. The compression system may include at least one compressor coupled to the at least one canister. The compressor may include a first rotor comprising at least two projections and a second rotor comprising at least two recesses. During rotation of the first and second rotors, gas moves through the compressor to at least one of the canisters. In the canisters, gas separation adsorbent may separate at least some nitrogen from air produce oxygen enriched gas.
Abstract:
An air conduit for a respiratory therapy device comprises a first end, a second end, and a tube portion, wherein the tube portion comprises a tube wall and an auxiliary structure, such as a rib. The air conduit may deliver a flow of air from a respiratory therapy device or a humidifier to a patient interface. The air conduit may comprise a plurality of auxiliary structures, some of which may consist of a polymeric material, and some of which may comprise a polymeric material and an electrical conductor. An auxiliary structure may be a helical rib extending across a length of the tube portion.
Abstract:
A method (200) for determining compliance of a connecting circuit in a non-invasive ventilator system. The method includes the steps of: (i) providing (210) a non-invasive ventilator system, the system having a flow or pressure controller; (ii) generating (220) a test signal for the flow or pressure controller; (iii) exciting (230) the flow or pressure controller with the generated test signal for a predetermined time period; (iv) obtaining (240), during the excitation of the flow or pressure controller, one or more measurements of the non-invasive ventilator system; (v) determining (250) a vector of the obtained measurements; and (vi) processing (260) the vector to determine an estimate of a physical parameter of the circuit.
Abstract:
Described is an apparatus for oxygenation and/or CO2 clearance of a patient, comprising: a flow source or a connection for a flow source for providing a gas flow, a gas flow modulator, a controller to control the gas flow, wherein the controller is operable to: receive input relating to heart activity and/or trachea gas flow of the patient, and control the gas flow modulator to provide a varying gas flow with one or more oscillating components with a frequency or frequencies based on the heart activity and/or trachea flow of the patient.
Abstract:
In a medical ventilator system, a ventilator (10) delivers ventilation to a ventilated patient (12). Sensors (24, 26) acquire airway pressure and air flow data for the ventilated patient. A probabilistic estimator module (40) estimates respiratory parameters of the ventilated patient by fitting a respiration system model (50) to a data set comprising the acquired airway pressure and air flow data using probabilistic analysis, such as Bayesian analysis, in which the respiratory parameters are represented as random variables. A display component (22) displays the estimated respiratory parameters of the ventilated patient along with confidence or uncertainty data comprising or derived from probability density functions for the random variables representing the estimated respiratory parameters.
Abstract:
Beschrieben wird, eine Vorrichtung zur Atemluftversorgung eines Menschen mit einem im Luftversorgungskreislauf angeordneten Rückatemsystem, das mittels eines CO 2 -Absorbers (1) wenigstens teilweise in der Ausatemluft des Menschen befindliches CO 2 entfernt und die Ausatemluft derart aufbereitet, dass die aufbereitete Luft dem Menschen wieder als Einatemluft zuführbar ist, und mit einem Kondensatauffangbehälter (9), in dem sich im Luftversorgungskreislauf bildendes Wasser auffangbar ist. Die beschriebene technische Lösung zeichnet sich dadurch aus, dass der Kondensatauffangbehälter (9) wenigstens teilweise unterhalb einer Reaktionszone (17) des CO 2 -Absorbers (1) angeordnet ist und dass im CO 2 -Absorber (1) wenigstens ein Wärmeübertrager (10, 14) vorgesehen ist, durch den Wärme aus der den CO 2 -Absorber (1) durchströmende, sich aufgrund der in der Reaktionszone des CO 2 -Absorbers (1) stattfindenden exothermen CO 2 -Absorptionsreaktion erwärmenden Luft abgeführt wird.
Abstract:
A high flow nasal therapy system (1) has a gas supply (2), a nebulizer (12), and a nasal interface (7). There are two branches (11, 10) and a valve (6) linked with the controller, the branches including a first branch (11) for delivery of aerosol and a second branch (10) for delivery of non-aerosolized gas. The controller controls delivery into the branches (11, 10), in which flow is unidirectional in the first and second branches, from the gas supply towards the nasal interface. The first branch (11) includes the nebulizer (12) and a line configured to store a bolus of aerosol during flow through the second branch (10). The valve (6) comprises a Y-junction between the gas inlet on one side and the branches on the other side.
Abstract:
A method includes obtaining a first physiological parameter indicative of a non-invasively measured airway pressure of a subject, obtaining a second physiological parameter indicative of a non-invasively measured air flow into the lungs of the subject, and estimating a third physiological parameter indicative of an intra-pleural pressure of the subject based on the first and second physiological parameters and generating a signal indicative thereof. An other method includes obtaining a first physiological parameter indicative of a non-invasively estimated intra-pleural pressure of a subject, determining a second physiological parameter indicative of a lung volume of the subject that is based on a third physiological parameter indicative of a non-invasively measured air flow into the lungs of the subject, and determining a work of breathing based on the first and second physiological parameters and generating a signal indicative thereof.