Abstract:
Examples include a fluid ejection device comprising a molded panel, an ejection die molded in the molded panel, and an integrated circuit molded in the molded panel. The ejection die comprises ejection nozzles to selectively dispense printing material. The integrated circuit receives nozzle data and controls the selective dispensation of printing material by the ejection nozzles based at least in part on the nozzle data. The molded panel has a fluid communication channel formed therethrough and fluidly connected to the ejection die.
Abstract:
A fluid recirculation channel for dispensing a plurality of fluid drop weights includes a number of sub-channels. The sub-channels include at least one pump channel, and a plurality of drop generator channels fluidically coupled to the at least one pump channel. The fluid recirculation channel further includes a number of pump generators incorporated into the at least one pump channel, a number of drop generators incorporated into drop generator channels, and a plurality of nozzles defined within the drop generator channels, the nozzles being at least as numerous as the number of drop generators.
Abstract:
An ink delivery device is described. The ink delivery device includes an ink die with a first surface. The ink delivery device also includes an overmold to encapsulate a number of surfaces of the ink die. The overmold has a second surface that is wider than the first surface. The second surface receives an adhesive to attach the ink delivery device to a printhead. The ink delivery device also includes an ink slot passing through the overmold and at least a portion of the ink die.
Abstract:
In one example, a fluid flow structure includes a micro device embedded in a printed circuit board (PCB). Fluid may flow to the micro device through a channel in the PCB and a PCB conductor is connected to a conductor on the embedded micro device.
Abstract:
A liquid ejection head includes a substrate including a first supply port row in which a plurality of supply ports are arranged, a first energy generating element row in which a plurality of energy generating elements are arranged, a second supply port row in which a plurality of supply ports are arranged, a second energy generating element row in which a plurality of energy generating elements are arranged, a first wiring layer and a second wiring layer for driving the energy generating elements, and a through hole configured to electrically connect the first wiring layer and the second wiring layer. The first energy generating element row, the first supply port row, the second supply port row, and the second energy generating element row are arranged in parallel in this order and the through hole is arranged between the first supply port row and the second supply port row.
Abstract:
A fluid ejection assembly includes a fluid slot formed in a first substrate and a channel formed in a chamber layer disposed on top of a second substrate. The bottom surface of the second substrate is adhered to the top surface of the first substrate and fluid feed holes are formed between the fluid slot and the channel. A fluid ejection element is at a first end of the channel and a pump element is at a second end of the channel to circulate fluid horizontally through the channel and vertically through the fluid feed holes.
Abstract:
A thermal inkjet printhead 100 and a method 200 of cooling convectively cool the printhead with ink passing through a feed transition chamber 130. The thermal inkjet printhead 100 includes a bridge beam 110 and feed channels 120 adjacent to the bridge beam. The printhead further includes a feed transition chamber 130 between inputs to the feed channels 120 and an ink reservoir 140. The ink flows through the feed transition chamber 130 between the ink reservoir 140 and the feed channels 120 to convectively cool. The method 200 of cooling includes providing 210 the feed transition chamber and flowing 220 ink through the feed transition chamber from the ink reservoir to the feed channels. The flowing ink establishes a temperature gradient between walls 132, 134 of the feed transition chamber and the ink. The temperature gradient facilitates convective cooling of the printhead.
Abstract:
Methods and an apparatus are disclosed, wherein a print head die includes a slot and ribs across the slot. The ribs are recessed from one or both sides of the die.