GOAL-BASED PLANNING SYSTEM
    3.
    发明申请
    GOAL-BASED PLANNING SYSTEM 审中-公开
    基于目标的规划系统

    公开(公告)号:WO2014177882A1

    公开(公告)日:2014-11-06

    申请号:PCT/GB2014/051368

    申请日:2014-05-02

    Abstract: A method and apparatus for determining actions for entities (4, 6) such that a goal is accomplished constraints are satisfied. The method comprises: determining an initial plan comprising actions that, if performed by the entities (4, 6), the goal would be accomplished; determining that a constraint would not be satisfied if the initial plan was implemented; and iteratively performing steps (i) to (v) until a final plan that accomplishes the goal and satisfies the is determined. Step (i) comprises identifying a constraint that is not satisfied in part of the current plan. Step (ii) comprises determining a remedy that, if implemented, satisfies the identified constraint. Step (iii) comprises updating the goal specification to include the remedy. Step (iv) comprises, using the updated goal specification, determining a further plan that accomplishes the goal and the remedy. Step (v) comprises determining whether or not the further plan satisfies each constraint.

    Abstract translation: 一种用于确定实体(4,6)的动作的方法和装置,使得实现目标的约束被满足。 该方法包括:确定初始计划,其包括如果由实体(4,6)执行的动作,则该目标将被实现; 确定如果初始计划得到实施,则约束不会得到满足; 并迭代地执行步骤(i)至(v),直到确定实现目标并满足目标的最终计划。 步骤(i)包括识别在当前计划的一部分中不满足的约束。 步骤(ii)包括确定如果被实现的,满足所识别的约束的补救措施。 步骤(iii)包括更新目标规范以包括补救措施。 步骤(iv)包括使用更新的目标规范来确定实现目标和补救措施的进一步计划。 步骤(v)包括确定进一步的计划是否满足每个约束。

    MICRO UNMANNED AERIAL VEHICLE AND METHOD OF CONTROL THEREFOR
    4.
    发明申请
    MICRO UNMANNED AERIAL VEHICLE AND METHOD OF CONTROL THEREFOR 审中-公开
    微型无人驾驶航空器及其控制方法

    公开(公告)号:WO2014064431A3

    公开(公告)日:2014-07-10

    申请号:PCT/GB2013052745

    申请日:2013-10-22

    Abstract: A micro unmanned aerial vehicle or drone ("UAV") 10 is remotely controlled through an HMI (309), although this remote control is supplemented by and selectively suppressed by an on-board controller (302). The controller operates to control the generation of a sonar bubble that generally encapsulates the UAV. The sonar bubble, which may be ultrasonic in nature, is produced by a multiplicity of sonar lobes generated by specific sonar emitters associated with each axis of movement for the UAV. The emitters produce individual and beamformed sonar lobes (80-102) that partially overlap to provide stereo or bioptic data in the form of individual echo responses detected by axis- specific sonar detectors (40-68). In this way, the on-board controller is able to interpret and then generate 3-D spatial imaging of the physical environment in which the UAV is currently moving or positioned. The controller is therefore able to plot relative and absolute movement of the UAV through the 3-D space by recording measurements from on-board gyroscopes (342), magnetometers (344) and accelerometers (346). Data from the sonar bubble can therefore both proactively prevent collisions with objects by imposing a corrective instruction to rotors (12-18) and other flight control system and can also assess and compensate for sensor drift.

    Abstract translation: 虽然该遥控器被车载控制器(302)补充并选择性地抑制,但通过HMI(309)远程控制微型无人驾驶飞行器或无人驾驶飞机(“UAV”)10。 控制器用于控制通常封装无人机的声纳气泡的产生。 本质上可能是超声波的声纳气泡由与用于UAV的每个运动轴相关联的特定声纳发射器产生的多个声纳波瓣产生。 发射器产生单个和波束形成的声纳波瓣(80-102),其部分重叠以提供由轴特定声纳探测器(40-68)检测的单独回波响应形式的立体声或生物数据。 以这种方式,车载控制器能够解释然后生成UAV当前正在移动或定位的物理环境的3-D空间成像。 因此,控制器能够通过记录来自板载陀螺仪(342),磁力计(344)和加速度计(346)的测量值来绘制无人机通过3-D空间的相对和绝对运动。 因此,来自声纳气泡的数据可以通过对转子(12-18)和其他飞行控制系统施加纠正指令来主动防止与物体的碰撞,并且还可以评估和补偿传感器漂移。

    MICRO UNMANNED AERIAL VEHICLE AND METHOD OF CONTROL THEREFOR
    5.
    发明申请
    MICRO UNMANNED AERIAL VEHICLE AND METHOD OF CONTROL THEREFOR 审中-公开
    微型无人机驾驶舱及其控制方法

    公开(公告)号:WO2014064431A2

    公开(公告)日:2014-05-01

    申请号:PCT/GB2013/052745

    申请日:2013-10-22

    Abstract: A micro unmanned aerial vehicle or drone ("UAV") 10 is remotely controlled through an HMI (309), although this remote control is supplemented by and selectively suppressed by an on-board controller (302). The controller operates to control the generation of a sonar bubble that generally encapsulates the UAV. The sonar bubble, which may be ultrasonic in nature, is produced by a multiplicity of sonar lobes generated by specific sonar emitters associated with each axis of movement for the UAV. The emitters produce individual and beamformed sonar lobes (80-102) that partially overlap to provide stereo or bioptic data in the form of individual echo responses detected by axis- specific sonar detectors (40-68). In this way, the on-board controller is able to interpret and then generate 3-D spatial imaging of the physical environment in which the UAV is currently moving or positioned. The controller is therefore able to plot relative and absolute movement of the UAV through the 3-D space by recording measurements from on-board gyroscopes (342), magnetometers (344) and accelerometers (346). Data from the sonar bubble can therefore both proactively prevent collisions with objects by imposing a corrective instruction to rotors (12-18) and other flight control system and can also assess and compensate for sensor drift.

    Abstract translation: 通过HMI(309)远程控制微型无人驾驶飞行器或无人机(“UAV”)10,尽管该遥控器由车载控制器(302)补充并且由车载控制器(302) )。 该控制器用于控制通常封装无人机的声纳气泡的产生。 声纳气泡本质上可能是超声波,是由与无人机每个运动轴相关的特定声纳发射器产生的多个声纳波瓣产生的。 发射器产生单独的和波束形成的声纳波束(80-102),部分重叠以提供立体声或活检数据,以由特定于轴的声纳探测器(40-68)检测到的单个回声响应的形式提供。 通过这种方式,机载控制器能够解释然后生成UAV当前移动或定位的物理环境的3-D空间成像。 因此,控制器能够通过记录来自机载陀螺仪(342),磁力计(344)和加速度计(346)的测量结果来绘制UAV通过3-D空间的相对和绝对移动。 因此,来自声纳气泡的数据可以通过向转子(12-18)和其他飞行控制系统施加纠正性指令来主动防止与物体的碰撞,并且还可以评估和补偿传感器漂移。

    ROUTE PLANNING
    8.
    发明申请
    ROUTE PLANNING 审中-公开
    路线规划

    公开(公告)号:WO2015198004A1

    公开(公告)日:2015-12-30

    申请号:PCT/GB2015/000200

    申请日:2015-06-26

    Abstract: Disclosed is a method and apparatus for determining a route for a vehicle (2). The method comprises generating, by a processor (12), a grid (16) by specifying a start node (18), specifying one or more movement operations performable by the vehicle (2), and iteratively adding edges and further nodes (20 - 24) to the grid (16), each edge corresponding to a respective movement operation and each further node corresponding to a location for the vehicle (2). The one or more processors (12) then select a path through the grid (16) from a first node of the grid to a second node of the grid. The first node corresponds to a first location (A) for the vehicle (2) and the second node corresponds to a second location (B) for the vehicle (2). Thus, a route for the vehicle (2) from the first location (A) to the second location (B) is determined.

    Abstract translation: 公开了一种用于确定车辆(2)的路线的方法和装置。 该方法包括通过指定开始节点(18)由处理器(12)生成网格(16),指定由车辆(2)执行的一个或多个移动操作,以及迭代地添加边缘和另外的节点(20- 24)到网格(16),每个边缘对应于相应的移动操作,并且每个另外的节点对应于车辆(2)的位置。 一个或多个处理器(12)然后选择从网格的第一节点到网格的第二节点的网格(16)的路径。 第一节点对应于车辆(2)的第一位置(A),第二节点对应于车辆(2)的第二位置(B)。 因此,确定从第一位置(A)到第二位置(B)的车辆(2)的路线。

    REDUNDANCY IN UAV ENGINE TIMING POSITION SYSTEMS
    9.
    发明申请
    REDUNDANCY IN UAV ENGINE TIMING POSITION SYSTEMS 审中-公开
    无人机发动机定时定位系统的冗余

    公开(公告)号:WO2015196253A1

    公开(公告)日:2015-12-30

    申请号:PCT/AU2015/050350

    申请日:2015-06-23

    Abstract: Redundancy in engine timing position sensing maintains a UAV operational in the event of failure of a primary engine timing position sub-system. The redundancy avoids duplication of the primary crankshaft timing position sensing components, and avoids adding weight, cost and component complexity. Conditioned (square) waveform(s) (102) is/are created from respective sinusoidal waveform(s). Each consecutive leading edge (103a) and trailing edge (103b) of the pulses of the square waveform (102) is derived from the crossing of the zero voltage value by consecutive sinusoidal waveforms A,B,C (e.g. Voltage (V) vs Time (t) or angular degrees). The square pulse waveform (102) is output (104) to a microcontroller (106) to create and output a pseudo crankshaft timing position signal (108) to be used by an ECU to determine ignition and fuel injection events in the event that the primary timing signal from the crankshaft position sensor (CPS) has failed. The signal (108) output to the ECU can have a missing pulse (116) (i.e. indicative of a TDC position of the engine crankshaft) as well as multiple square pulses (114) corresponding to the pulses of the initial square pulse waveform (102). The waveform signal (108) is therefore derived from the alternator waveform signal(s) and provides a pseudo crankshaft timing position signal in the event of failure of the primary or initial CPS signal.

    Abstract translation: 发动机定时位置检测的冗余在主发动机定时位置子系统发生故障的情况下维持UAV的运行。 冗余避免了主曲轴定时位置检测部件的重复,并避免了增加重量,成本和部件复杂度。 从相应的正弦波形产生条件(平方)波形(102)。 方波(102)的脉冲的每个连续的前缘(103a)和后沿(103b)是从零电压值与连续的正弦波形A,B,C的交叉导出的(例如,电压(V)vs时间 (t)或角度)。 方波脉冲波形(102)被输出(104)到微控制器(106),以产生并输出伪曲轴定时位置信号(108),以由ECU使用以确定点火和燃料喷射事件, 来自曲轴位置传感器(CPS)的定时信号失败。 输出到ECU的信号(108)可以具有缺失脉冲(116)(即,表示发动机曲轴的TDC位置)以及对应于初始方波脉冲波形(102)的脉冲的多个平方脉冲(114) )。 因此,波形信号(108)从交流发电机波形信号导出,并且在初级或初始CPS信号故障的情况下提供伪曲轴定时位置信号。

Patent Agency Ranking