摘要:
The present invention relates to a preparation method which is performed by expressing the recombinant carrier proteins in Escherichia coli and purification thereof. More particular, the invention relates toindustrially scalable process for the recovery of recombinant carrier proteins.
摘要:
The present invention provides method of increasing the percentage of monomer in a composition of recombinantly expressed antibody molecules characterised in that the antibody molecule comprises at least one Fv with specificity for an antigen of interest comprising one VH and one VL wherein said VH and VL are connected directly or indirectly via one or more linkers and are stabilised by a disulfide bond therebetween, said method comprises: a) a conversion step of treating the composition with a denaturant selected from urea and/or Guanidine hydrochloride; b) wherein step a) is performed in the presence of a reducing agent or after treatment with a reducing agent.
摘要:
Provided herein are methods for refolding proteins that are denatured. Exemplary methods comprise solubilizing the denatured protein with a denaturing agent, e.g., a chaotropic agent, and renaturing the protein using a buffer exchanging system, e.g., tangential flow filtration (TFF).
摘要:
Provided herein are methods and compositions for controlling assembly of modified viral core proteins, for example, into a viral capsid or a nanocage. In some embodiments, the disclosed modified viral core proteins comprise at least one mutation or modification that can substantially prevent assembly of the viral core proteins until assembly is desired. In some embodiments, assembly of the viral core proteins may be triggered, for example, by contacting the viral core proteins with a reducing agent and/or by reducing the concentration of a denaturant. The viral core proteins may self-assemble to form a viral capsid or nanocage.
摘要:
The present invention is characterized by a D-aptamer-like peptide (D-Aptide) or retro-inverso Aptide which specifically binds to a target comprising: (a) a structure stabilizing region comprising parallel, antiparallel or parallel and antiparallel D-amino acid strands with interstrand noncovalent bonds; and (b) a target binding region I and a target binding region II comprising randomly selected n and m D-amino acids, respectively, and coupled to both ends of the structure stabilizing region. The D-Aptide or retro-inverso Aptide has the sequence of the same or opposite direction to L-Aptide, wherein the stability to proteases is improved while maintaining the affinity to a target compared with L-Aptide. The D-Aptide of the present invention has substantially the same target affinity and a remarkably improved stability compared with L-Aptide which is different from a general technical knowledge.
摘要:
The present invention relates to a method for preventing the unfolding of a (poly)peptide during drying and/or inducing the (re-)folding of a (poly)peptide after drying, comprising the step of embedding the (poly)peptide in an aqueous solution, wherein the solution comprises (i) at least three different amino acids; or (ii) at least one dipeptide or tripeptide; and wherein the solution is free or substantially free of (a) sugar; and (b-i) protein; and/or (b-ii) denaturing compounds; and (c) silanes.
摘要:
The present application relates to methods for purifying recombinant proteins, including antibodies and antibody fragments. Suitably, the methods utilize depth filtration to clarify the desired proteins from a solubilized mixture, and provide refolding methods and refolding buffers to allow for refolding of the recombinant proteins into functional and active proteins. Exemplary antibody fragments include anti-CD22 antibody fragments that comprise V H and V L chains refolded into a functional and active fragment.
摘要:
The invention provides methods of preparing macrocycles including macrocycle stabilized peptides (MSPs). Macrocycles and MSPs are prepared according to nucleophilic capture of an iminoquinomethide type intermediate generated from a suitably substituted 2-amino-thiazol-5-yl carbinol. The preferred nucleophile may be selected from an electron rich aromatic moiety in the case of macrocycles and, in the case of MSPs, at least one amino acid comprises an electron rich aromatic moiety. In addition, the concept can be extended to other related 5-membered heterocyclic systems in place of the thiazole, such as imidazole or oxazole. The conditions for the generation of the corresponding iminoquinomethide type intermediates may be similar or different than the conditions used for the 2-amino-thiazol-5-yl carbinol.