Abstract:
The invention is directed to a method of increasing the chemical and/or thermal stability of PHA in biomass where the biomass is contained within mixed liquor, and wherein the mixed liquor is treated by a combination of removing water from the mixed liquor and pH adjustment of the mixed liquor or maintenance of the pH of the mixed liquor within a selected pH range, and wherein the method includes reducing the pH of the mixed liquor below 6, or maintaining the pH of the mixed liquor below 6 for a selected period of time, and wherein the pH adjustment of the mixed liquor to below 6 or the maintenance of the pH of the mixed liquor below 6 gives rise to an increase in chemical and/or thermal stability of the PHA in the biomass.
Abstract:
The present invention relates to a method to recover an intracellular polyhydroxyalkanoates (PHA). The method includes the steps of (a) separating culture medium containing PHA-rich cells using centrifugation, (b) rinsing pellet obtained from step (a) with distilled water, (c) freeze- drying the pellet obtained in step (b), (d) adding distilled water to the freeze-dried sample, (e) separating non-PHA cellular material (NPCM) from PHA granules, (f) washing the pellet containing PHA from step (e) by distilled water and centrifuging for producing final pellet, and (g) freeze-drying the pellet produced from step (f).
Abstract:
A process for manufacturing a polymer having a molecular weight in excess of 5,000, and preferably in excess of 40,000, comprises, producing a polymerized reaction mass in which the polymer is dispersed, the reaction mass including solvents), unreacted monomer and other unwanted contaminants; feeding the reaction mass to a means for disentangling the polymer's molecules to produce a modified polymer in the reaction mass; feeding the modified polymer in the reaction mass to a polymer-recovering means; removing the unwanted volatiles and other byproducts; and, recovering a high molecular weight substantially pure modified polymer having substantially the same molecular weight as the polymer fed to the disentangling means and a viscosity at least 10% lower than that of the polymer fed to the disentangling means.
Abstract:
The invention provides a polyester production process by bulk polymerization in a reactor, wherein the volume of the resulting polyester is shrunk for a release from the inner surface of the reactor, so that the polyester can be recovered in the form of a bulky mass. The invention also provides a reactor for bulk polymerization for polyester, which comprises an inner surface that enabling the resulting polyester to be released therefrom upon its volume shrinkage.
Abstract:
The invention relates to a method for the production of a homo- or copolymer of a poly- beta -hydroxyalkanoic acid (PHA) from biomass, characterized in that the biomass is extracted by 1-methyl-2-pyrrolidone (NMP), optionally using a water binding agent, from a viscous suspension which forms at a temperature >/= of 40 DEG C. PHA-containing solution is separated out and PHA is subsequently precipitated out.
Abstract:
Methods for the recovery and purification of polyhydroxyalkanoates (PHAs) from biomass containing PHAs, wherein the methods include treating the biomass or partially purified PHA with ozone, in at least one step of a purification process, have been developed. Treatment of PHA-containing biomass or partially purified PHA with ozone yields an enhanced level of purity suitable for coating and other applications. The ozone treatment also has the added advantage that the resulting PHA polymer or polymer latex is essentially odor-free. The ozone treatment may be used alone or in combination with other treatment, extraction, and separation stages, and is especially suitable for the treatment of PHA-containing latexes, slurries, suspensions, and organic solutions.
Abstract:
Methods are provided for separating polyhydroxyalkanoates ("PHAs") from plants, such as transgenic oil crop plants. The methods advantageously permit both the oil and the PHAs to be recovered from the plant biomass. To isolate the PHAs, in one embodiment, a biomass derived from an oil crop plant is pre-processed, for example by grinding, crushing or rolling. The oil then is extracted from the biomass with a first solvent in which the oil is soluble and in which the PHAs are not highly soluble to remove the oil. The biomass then can be extracted with a second solvent in which the PHA is soluble, to separate the PHA from the biomass. Alternatively, the PHA-containing biomass is treated with a chemical or biochemical agent, such as an enzyme, to chemically transform the PHA into a PHA derivative. The PHA derivative then is separated from the mixture using, for example, a physical separation process such as distillation, extraction or chromatography. Advantageously, using the method, the plant oils, the PHAs and PHA derivatives can be recovered and purified on a large scale from oil containing plants such as transgenic oil crop plants.
Abstract:
Producing a resin from an organic waste product includes assessing a weight percent of a first volatile fatty acid and a weight percent of a second volatile fatty acid in a liquid mixture having volatile fatty acids from the organic waste product. The weight percent of the volatile fatty acids is based on the total weight of the carboxylic acids in the liquid mixture, the total weight of volatile fatty acids in the liquid mixture, or the total weight of lactic acid and volatile fatty acids in the mixture. A ratio of the weight percent of the first volatile fatty acid to the weight percent of the second volatile fatty acid in the liquid mixture is adjusted to yield a modified liquid mixture. The modified liquid is combined with polyhydroxyalkanoate-producing bacteria to yield a polyhydroxyalkanoate copolymer; and the polyhydroxyalkanoate copolymer is extracted from the polyhydroxyalkanoate-producing bacteria.
Abstract:
A process and apparatus which reduces the fines in a liquid discharge stream and/or increases the dryness of a solids discharge stream while under a pressure equal to or greater than the vapor pressure of the liquid. There is provided a process for separating particles such as polyethylene terephthalate or polyethylene naphthalate from a liquid in a slurry comprising: a. feeding a slurry comprising solid particles and a liquid into a within a separation zone maintained at a pressure equal to or greater than the vapor pressure of the liquid; b. contacting the slurry in the separation zone with a porous filter, optionally a microfilter, nanofilter, reverse osmosis filter, or ultrafilter, and separating liquid from the particles, wherein the liquid flows through the filter into an outer annulus defined as a space between the wall of the separation device and the filter, and said porous filter optionally having a terminal point beyond which the separated liquid does not pass from the outer annulus back through the filter; c. accumulating no liquid in the outer annulus or accumulating liquid in the outer annulus at a level below or in front of the terminal point, and continuously discharging the separated liquid from the outer annulus through a liquid outlet; d. decoupling the particles from the separation zone through the solids outlet to a low pressure below the vapor pressure of the liquid at the liquid temperature within the separation zone while maintaining a pressure on the particles prior to decoupling at or above the vapor pressure of the liquid within the separation zone.