Abstract:
According to embodiments of the present invention, a bioreactor for growing photoautotrophic organisms is provided. The bioreactor includes a vessel configured to receive the photoautotrophic organisms, the vessel having a longitudinal axis, which a circumferential wall extends around said axis, wherein said circumferential wall is translucent so as to enable light to enter the vessel from the outside for acting on the photoautotrophic organisms, wherein a device for providing an uneven distribution of the light intensity within said vessel along said axis is provided.
Abstract:
A photobioreactor is presented comprising a chamber for retaining aqueous media and a tubular circulation element positioned within the chamber, the circulation element defining a fluid circulation pathway within the chamber, wherein the tubular circulation element comprises a wall element which in turn comprises either or both a light source and/or a light guide for illuminating the chamber. The provision of a light source and/or light guide within a circulation element of a photobioreactor allows a larger volume of algae to be grown more cost effectively than photobioreactors in the art. In addition, a method of assembly of a circulation element for use within a photobioreactor is provided.
Abstract:
Biogasanlage (1) mit einem Fermenter(2), der eine erste und zumindest eine zweite Gärkammer (K1, K2) zum Vergären des Gärmediums aufweist, wobei in der ersten Gärkammer (K1) gebildetes Biogas in ein in der zweiten Gärkammer (K2) angeordnetes Steigrohr (7) einbringbar ist.
Abstract:
The plant comprises a fermentation chamber (4), a compensation chamber (6) and a final settling chamber (7) which are preferably joined into a construction assembly and thermically insulated, the fermentation chamber being provided with at least one inlet pipe and the compensation and settling chambers with at least one outlet. The particular shape of the compensation chamber (6) as well as the arrangement of the adjustable edge of the overflow-shoot (32) including the by-pass conduit (23) with gas and floating material separator (26) create the conditions required for further treating floating materials and discharging them. The arrangement of the final settling chamber (7) under, respectively beside, the fermentation chamber (4) generates the high hydrostatic pressure charge required for a better separation of micro-organisms of flowing fermentation residues. The settled outflow is directed to the outside (3) through a siphon pipe (11) provided with an overflow edge (42) in a common collector opened on the gas side to the compensation chamber (6) and having a discharge conduit in the form of a siphon (21) provided with a closure member. The deposited active sludge (micro-organism) is reintroduced at regular intervals from the settling chamber (7) into the fermentation chamber through one or a plurality of siphon conduits (12). According to the raw substrate to be treated, the path of the substrate in the fermentation container (1) is defined by the selection and arrangement of connection and conveying conduits (9, 10, 11, 12, 13). By providing an anaerobic filter (51) in lieu of the siphon (11), an improvement of the purification degree and an easy maintenance of the filter (51) by a washing integrated in the mixing system are obtained.
Abstract:
Un fermenteur pour milieu liquide comprenant un récipient, une paroi de séparation entre deux volumes et un dispositif d'injection du gaz dans la partie inférieure de l'un des volumes. Le gaz crée dans ce volume une circulation ascendante du mélange entre le milieu liquide et le gaz injecté et une circulation descendante dans l'autre volume. La paroi de séparation est équipée d'au moins un dispositif de mise en communication fluidique des volumes entre eux configuré pour varier automatiquement entre une première configuration ouverte permettant une circulation fluidique libre d'un volume à l'autre et une deuxième configuration fermée dans laquelle le dispositif de mise en communication fluidique bloque tout ou partie de ladite circulation fluidique.
Abstract:
An autonomous control system can be used with one or more systems or components to improve the operation of the systems or components. For example, an autonomous control system can be used in combination with a biorefinery system to improve the operation of the biorefinery system.
Abstract:
Subject of the invention is a process for the enzymatic oxidation of a substrate. Specifically, the invention relates to the production of gluconate, wherein the gluconate is produced in an enzymatic reaction from glucose, wherein the reaction is carried out in a jet loop reactor comprising at least one static mixer and at least one ejector for enriching the reaction mixture with oxygen. The invention also relates to a jet loop reactor comprising at least one static mixer and at least one ejector for enriching the reaction mixture with oxygen.
Abstract:
Die vorliegende Erfindung betrifft einen Tank (30) zur Fermentation mit mindestens einer Befüllleitung (32) zur Zuführung einer frischen Flüssigkeit und mit mindestens einer Entnahmeleitung (34) zur Ableitung einer zumindest teilweise fermentierten Flüssigkeit. Der Tank (30) weist ein der Befüllleitung (32) oder der Entnahmeleitung (34) zugeordnetes Leitrohr (36) auf, das zur Lenkung und/oder Beruhigung der im Tank (30) befindlichen Flüssigkeiten dient. Das Leitrohr (36) weist eine offene Unterseite (38) auf. Es ist ferner eine Vorrichtung zur Fermentation aus einer mehrstufigen Anordnung (54) von zwei oder mehreren, miteinander in einer Kaskade gekoppelten Tanks (30 1 , 30 2 , 30 3 , 30 4 , 30 5 ) zur Fermentation offenbart. Zudem ist ein Verfahren zur kontinuierlichen oder semikontinuierlichen Fermentation eines Substrats und/oder von Flüssigkeiten innerhalb wenigstens eines Tanks (30 1 , 30 2 , 30 3 , 30 4 , 30 5 ) zur Fermentation offenbart.