摘要:
Disclosed are methods of preparing CD34+CD43+ hematopoietic progenitor cells (HPC) in vitro according to embodiments of the invention. Also disclosed are methods of differentiating CD34+CD43+ hematopoietic progenitor cells to hematopoietic lineage cells according to embodiments of the invention. Also disclosed are methods of treating or preventing a condition in a mammal, e.g., cancer, according to embodiments of the invention.
摘要:
Provided herein are methods, compositions and uses involving immunotherapies, such as adoptive cell therapy, e.g., T cell therapy, and inhibitors of a TEK family kinase, such as BTK or ITK. The provided methods, compositions and uses include those for combination therapies involving the administration or use of one or more such inhibitor in conjunction with another agent, such as an immunotherapeutic agent targeting T cells, such as a therapeutic antibody, e.g., a multispecific (e.g., T cell engaging) antibody, and/or genetically engineered T cells, such as chimeric antigen receptor (CAR)-expressing T cells. Also provided are methods of manufacturing engineered T cells, compositions, methods of administration to subjects, nucleic acids, articles of manufacture and kits for use in the methods. In some aspects, features of the methods and cells provide for increased or improved activity, efficacy, persistence, expansion and/or proliferation of T cells for adoptive cell therapy or endogenous T cells recruited by immunotherapeutic agents.
摘要:
Disclosed herein are cells that are immunoinhibitory cell, which cells recombinantly express a dominant negative form of an inhibitor of a cell-mediated immune response of the cell. In certain embodiments, the immunoinhibitory cell is a regulatory T cell. In another aspect, provided herein is a regulatory T cell that recombinantly expresses a dominant negative form of an inhibitor of a regulatory T cell-mediated immune response. The cells can be sensitized to an antigen that is the target of a pathologic immune response associated with an immune-mediated disorder. Additionally provided are methods of using such cells to treat an immune-mediated disorder in a subject in need thereof.
摘要:
The present invention provides a humanized antibody or fragment thereof specific for the antigen CD3, wherein said antibody or fragment thereof comprises a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 1, a CDR2 region of SEQ ID NO:2, and a CDR3 region of SEQ ID NO:3, and a light chain variable domain comprising a CDR1 region of SEQ ID NO:4, a CDR2 region of SEQ ID NO:5, and a CDR3 region of SEQ ID NO:6. In addition, the present invention provides a method for polyclonal stimulation of T cells comprising contacting a population of T cells with said anti-CD3 antibody, optionally with an anti-CD28 antibody, wherein said anti-CD3 antibody and optionally said anti-CD28 antibody are linked to particles. Further said anti-CD3 antibody can be used for reversible tagging of cells.
摘要翻译:本发明提供对抗原CD3特异性的人源化抗体或其片段,其中所述抗体或其片段包含包含SEQ ID NO:1的CDR1区,SEQ ID NO:2的CDR2区和SEQ ID NO:2的重链可变结构域,和 SEQ ID NO:3的CDR3区和包含SEQ ID NO:4的CDR1区,SEQ ID NO:5的CDR2区和SEQ ID NO:6的CDR3区的轻链可变结构域。 此外,本发明提供了一种T细胞多克隆刺激的方法,其包括将T细胞群与所述抗-CD3抗体任选地与抗CD28抗体接触,其中所述抗CD3抗体和任选的所述抗-CD28抗体 与颗粒相连。 此外,所述抗CD3抗体可用于细胞的可逆标记。
摘要:
This disclosure describes, generally, a modified form of CD 16, genetically-modified cells that express the modified CD 16, and methods that involve the genetically-modified cells. The modified form of CD 16 can exhibit increased anti-tumor and/or anti- viral activity due, at least in part, to reduced susceptibility to ADAM17-mediated shedding upon NK cell stimulation.
摘要:
Therapeutic and diagnostic methods are provided, which methods relate to the induction of expression of calreticulin on phagocytic cells. Specifically, the methods relate to macrophage-mediated programmed cell removal (PrCR), the methods comprising increasing PrCR by contacting a phagocytic cell with a toll-like receptor (TLR) agonist; or down-regulating PrCR by contacting a phagocytic cell with an inhibitor of Bruton's tyrosine kinase (BTK). In some embodiments, an activator of TLR signaling or a BTK agonist is provided in combination with CD47 blockade.
摘要:
Disclosed herein is a method for ex vivo expanding tumor-infiltrating lymphocytes for use in adoptive cell therapy (ACT). The method involves culturing tumor fragments from the subject in a culture medium containing IL-2 and a 41BB agonist in an amount effective to expand tumor-infiltrating lymphocytes with enriched tumor-reactivity and specificity. Also disclosed is a method for treating a tumor in a subject that involves treating the subject with nonmyeloablative lymphodepleting chemotherapy, and administering tumor-infiltrating lymphocytes expanded by the disclosed methods.
摘要:
Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said immune cells (ex: CD38, CSl or CD70) by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
摘要:
The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
摘要:
A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T- cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.