Abstract:
There is described herein a method for culturing mesenchymal stromal cells (MSCs) comprising: a) providing a population comprising mesenchymal stromal cells; and b) enhancing the population under conditions that allow the MSCs to loosely self-aggregate and in the presence of cytokine to produce culture engineered MSCs (ce-MSCs). In an embodiment, the cytokine is present at 0.1 - 15 ng/ml.
Abstract:
The invention provides methods for using Umbilical Cord Lining Stem Cells (ULSCs) to produce therapeutic factors including growth factors, cytokines, chemokines and extracellular matrix components. ULSCs are mesenchymal stem cells isolated from umbilical cord lining. They can be efficiently propagated and expanded in vitro. Under specific conditions ULSCs produce useful therapeutic factors that can be used to treat injuries and degenerative conditions.
Abstract:
The present disclosure generally regards methods and compositions for providing multi-lineage hematopoietic precursor cells from pluripotent stem cells (PSCs). The PSCs comprise an expression construct encoding an ETS/ERG gene, GATA2 and HOXA9. Also provided are methods for providing hematopoietic stem cells capable of long-term engraftment in mammals, such as humans. Further provided are therapeutic compositions including the provided hematopoietic stem cells and precursors of hematopoietic cells, and methods of using such for the treatment of subjects
Abstract:
A method of treating a malignant disease in a subject in need thereof is disclosed. The method comprises subjecting cells of the subject to a therapeutically effective amount of an agent capable of ablating Perforin positive dendritic cells (Perf+ DCs) of the subject, thereby treating the malignant disease.
Abstract:
The present description relates to in vitro methods for culturing hematopoietic stem cells (HSCs) under mild hyperthermia conditions (e.g., between 38°C and 40°C) in the presence of a pyrimidoindole derivative agonist of hematopoietic stem cell expansion. The combined use of mild hyperthermia and the pyrimidoindole derivative act synergistically to promote expansion of CD34+ HSCs and/or differentiation into progenitor cells (e.g., megakaryocytic progenitors). The present description also relates to in vitro expanded cell populations of HSCs and/or progenitors, as well as uses thereof in therapy (e.g., transplantation).
Abstract:
This disclosure relates to pancreatic stromal progenitor cells. This disclosure also relates to isolation of pancreatic stromal progenitor cells. This disclosure further relates to a composition comprising pancreatic stromal progenitor cells and preparation of this composition. This disclosure also relates to a treatment comprising administering a composition comprising pancreatic stromal progenitor cells. This disclosure also relates to a treatment of diabetes mellitus comprising administering a composition comprising pancreatic stromal progenitor cells.
Abstract:
Hematopoeitic stem/progenitor cells (HSPC) and/or non-T effector cells are modified to express an extracellular component including a tag cassette. The tag cassette can be used to activate, promote proliferation of, detect, enrich, isolate, track, deplete and/or eliminate modified cells. The cells can also be modified to express a binding domain.
Abstract:
The present invention is directed towards methods of culturing epithelial cells, with the methods comprising culturing epithelial cells in a calcium-containing medium with lnterleukin-6 (IL6) or ephrin A5 (EfnA5), or both, while inhibiting the activity of Rho kinase (ROCK) in the epithelial cells during culturing.
Abstract:
Provided herein are methods of isolation and identification of post-natal hemogenic endothelial cells. Further provided are substantially purified populations of post-natal hemogenic endothelial cells, compositions of post-natal hemogenic endothelial cells, and methods to utilize hemogenic endothelial cells to regenerate the hematopoietic system in a subject.