Abstract:
본 발명이 이루고자 하는 기술적 과제는 환원가스의 손실 없이 유동환원로 내에 유동베드에 열을 공급하기 위한 파이넥스 공정의 용철 제조 장치 및 이를 이용한 용철 제조 방법을 제공하고자 한다. 이를 위하여 본 발명의 한 실시예에 따른 용철 제조 장치는, 환원철을 제공하는 유동환원로, 상기 환원철을 장입하고, 내부에 산소를 취입하여 용철을 제조하는 용융가스화로, 그리고 상기 유동환원로 내부로 플라즈마 가스를 취입하는 플라즈마 토치를 포함한다. 본 발명에서는 유동환원로 내부에 열을 공급하는 플라즈마 토치를 설치함으로써, 유동환원로 내의 유동베드를 승온시킬 수 있다. 또한, 플라즈마 토치를 적절한 위치에 설치함으로써 분산판이 손상되는 것을 방지할 수 있고, 플라즈마 가스를 사용하여 유동베드를 승온시켜, 환원가스를 소모하지 않으므로, 분철광의 환원율을 높여 파이넥스 공정 조업 효율을 높일 수 있다.
Abstract:
Provided is a molten iron manufacturing method manufacturing molten iron by rapidly heating coal after charging the coal in a dome part of a melting and gasifying furnace of a molten iron manufacturing apparatus, so as to form char in a large size by reducing the degradation of coal briquettes charged in the melting and gasifying furnace, the molten iron manufacturing apparatus comprising: the melting and gasifying furnace charging reduced iron; and a reducing furnace connected to the melting and gasifying furnace, and providing the reduced iron, and the method comprising the steps of: i) carbonizing the coal and providing the carbonized coal; ii) providing the reduced iron obtained by reducing iron ore in the reducing furnace; and iii) providing the molten iron by charging the carbonized coal and the reduced iron in the melting and gasifying furnace.
Abstract translation:这种颗粒状金属铁的制造方法具有附聚步骤,其中含有含铁氧化物的物质和碳质还原剂的混合物凝聚以获得附聚物质; 以及成粒步骤,其中附聚物质被加热,附聚物质中的氧化铁被还原,并且所产生的金属铁与作为副产物产生的炉渣分离,被聚集成颗粒,随后冷却和固化,得到 粒状金属铁。 使用满足下述式(1)〜(3)所示的全部条件的物质作为附聚物质:(1)[(CaO的总量+ SiO 2的总量+ Al 2 O 3的总量)/ Fe的总量≥0.250; (2)(CaO总量/ SiO2总量)≥0.9; 和(3)[Al 2 O 3 /(CaO的总量+ SiO 2的总量+ Al 2 O 3的总量)的总量]×100≥9.7。 在该配方中,CaO的总量,SiO 2的总量,Al 2 O 3的总量和Fe的总量分别表示包含在附聚物质中的CaO,SiO 2,Al 2 O 3和Fe的质量百分比。
Abstract:
The invention relates to a method for increasing the penetration depth of an oxygen stream having a volume flow and a mass flow entering the bed of an iron ore production unit, preferably a melt reduction unit or melter gasifier or an oxygen-blowing furnace, said stream comprising technically pure oxygen for gasifying carbon carriers present in the bed, characterized in that the ratio of volume flow to mass flow of the oxygen stream is increased.
Abstract:
Die Erfindung betrifft ein System zur Energieoptimierung in einer Anlage zur Herstellung von direkt reduzierten Metallerzen (3), insbesondere direkt reduziertem Eisen, wobei die Anlage (3) zumindest ein Reduktionsaggregat (12), eine Einrichtung zur Trennung von Gasgemischen (7, 7a, 7b) mit zugehöriger Verdichtungseinrichtung (4, 4a, 4b) sowie eine dem Reduktionsaggregat (12) vorgeschaltete Gaserwärmungseinrichtung (10) umfasst. Weiterhin wird ein Teil der Prozessgase (2, 2a, 2b) über eine Zuführleitung aus zumindest einer Anlage zur Roheisenerzeugung (1, 1a, 1b), insbesondere einer Schmelzreduktionsanlage, der Anlage zur Herstellung von direkt reduzierten Metallerzen (3) zugeführt. Beim erfindungsgemäßen System ist eine Turbine (8, 8a, 8b), insbesondere eine Expansionsturbine, derart zwischen der Einrichtung zur Trennung von Gasgemischen (7, 7a, 7b) und der dem Reduktionsaggregat (12) vorgeschalteten Gaserwärmungseinrichtung (10) eingepasst, dass ein Druckgefälle zwischen der Einrichtung zur Trennung von Gasgemischen (7, 7a, 7b) und dem Reduktionsaggregat (12) in zum Betrieb weiterer Komponenten (4, 4a, 4b, 15, 15a, 15b) der Anlage zur Herstellung von direkt reduzierten Metallerzen (3) nutzbare Energieformen, insbesondere elektrische und/oder mechanische Energie, umgewandelt wird. Durch die Erfindung werden auf einfache und vorteilhafte Weise ein Energieverbrauch der Anlage (3) reduziert und damit Betriebskosten gesenkt, da durch den Einsatz der Turbine (8, 8a, 8b) das Druckgefälle zwischen der Einrichtung zur Trennung von Gasgemischen (7, 7a, 7b) und dem Reduktionsaggregat (12) wirtschaftlich genutzt wird.
Abstract:
A direct smelting process is disclosed. The process is characterised by processing off-gas released from a direct smelting vessel (3). Off-gas processing includes cooling the off-gas and particulate material carried in the off-gas and thereafter removing particulate material from the cooled off-gas. The cooled and cleaned off-gas is split. At least part of the off-gas is used as a source of energy for heating stoves (11). Another part of the off-gas is used as a source of energy in a waste heat recovery unit (25). Off-gas processing also includes adjusting operating conditions in the waste heat recovery unit to accommodate variations in off-gas supplied to the waste heat recovery unit.
Abstract:
The present invention relates to upgrading iron ore to decrease the amount of nonferrous materials therein, and to thereby increase the iron content thereof. More particularly, the invention relates to a process utilizing magnetic fields (20, 50, 140) to separate a feed stream into magnetic fractions (30, 60, 150) and nonmagnetic fractions (40, 70, 160). Inventive processes maybe advant ageously used to separate a significant amount of nonmagnetic material such as silica or pyrolusite, from valuable iron oxide in an iron ore or iron ore concentrate. The invention therefore finds advantageous use to provide an improved source of iron oxides for high purity uses such as, for example, direct reduction processes and heavy media coal beneficiation processes.
Abstract:
The wet granulated iron ore is initially conducted through a drying zone. The ore leaves the drying zone at a temperature of 120-400 DEG C. The ore is then heated in direct contact with hot gas to temperatures of 700-1,100 DEG C before being delivered to a reduction zone. The ore coming out of the drying zone is fully or partially guided through a separating device so as to separate the ore into fine and coarse grain fractions. The fine-grained ore fraction is conveyed to a granulating device so as to produce an iron ore granulate which is conducted to the drying zone. The coarse-grained ore fraction is heated to temperatures of 700-1,100 DEG C before it is guided into the reduction zone.
Abstract:
환원철이 장입되는 용융가스화로 및 용융가스화로에 연결되고, 환원철을 제공하는 환원로를 포함하는 용철제조장치에서 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄 및 그 제조 방법을 제공한다. 성형탄의 제조 방법은 i) 미분탄을 제공하는 단계, ii) 미분탄에 분말형의 셀룰로오스 에테르 화합물을 혼합하여 배합탄을 제공하는 단계, iii) 폴리 비닐 알코올을 포함하는 수용액을 준비하는 단계; iv) 배합탄에 폴리 비닐 알코올을 포함하는 수용액을 첨가하여 혼합물을 제공하는 단계 및 v) 혼합물을 성형하여 성형탄을 제공하는 단계를 포함한다.