Abstract:
An inorganic fiber containing silica and magnesia as the major fiber components and which further includes an intended chromium oxide additive to improve the dimensional stability of the fiber. The inorganic fiber exhibits good thermal insulation performance at 1400°C and greater, retains mechanical integrity after exposure to the use temperature, and which remains soluble in physiological fluids. Also provided are thermal insulation product forms that are made from a plurality of the inorganic fibers, methods of preparing the inorganic fiber, and methods of thermally insulating articles using thermal insulation prepared from a plurality of the inorganic fibers.
Abstract:
The invention relates to lithium-based battery systems and, more particularly, to electro-spinable solution compositions, electro-spun sulfur-polymer fibers, e.g., wires and yarns, and their use in preparing high performance sulfur mattes, e.g., electrodes, for lithium-sulfur batteries with potential applications in small-scale mobile devices. The sulfur-polymer fibers have nanoscale dimensions and yarn-like morphology. The sulfur-polymer fibers can be prepared by co-dissolving sulfur and polymer in a solvent for forming the electro-spinable solution, and electrospinning the solution. The electrospun fibers can be used to form a composite that includes alternating layers of the electrospun fibers and polymer on a current collector.
Abstract:
L'invention concerne un procédé de fabrication d'une structure fibreuse, comportant les étapes suivantes : a) formation d'au moins une fibre céramique essentiellement amorphe par traitement thermique d'au moins une fibre précurseur de fibre céramique à une température comprise entre 900°C et 1200°C, et b) réalisation d'une ou plusieurs opérations textiles mettant en oeuvre au moins une fibre céramique essentiellement amorphe formée lors de l'étape a) pour former une structure fibreuse comportant ladite au moins une fibre céramique essentiellement amorphe.
Abstract:
An inorganic fiber containing silica and magnesia as the major fiber components which further includes an intended strontium oxide additive to improve the thermal stability of the fiber. The inorganic fiber exhibits good thermal performance at 1260 o C and greater for 24 hours or more, retains mechanical integrity after exposure to the use temperature, and exhibits low biopersistence in physiological fluids. Also provided are thermal insulation product forms, methods of preparing the inorganic fiber and of thermally insulating articles using thermal insulation prepared from a plurality of the inorganic fibers.
Abstract:
The invention relates to an ultralong hydroxyapatite nanowire/microwire, a method of preparing the same, a hydroxyapatite paper comprising the same and a preparation method thereof, and provides an ultralong hydroxyapatite nanowire/microwire having a length of tens to hundreds of micrometers and a diameter of tens to hundreds of nanometers. There is also provided a method of preparing the ultralong hydroxyapatite nanowire/microwire, a hydroxyapatite paper comprising the ultralong hydroxyapatite nanowire/microwire, and a method of preparing the hydroxyapatite paper.
Abstract:
Disclosed is a Nanotube Detangler capable of aligning and ordering the constituent nanotubes, nanowires and/or nanoparticles of a filament leading to greater tensile strength of the filament and subsequent threads or structures made from it. The technique exploits ion infusion as a mechanism to force the tangle of the nanotubes, nanowires and/or nanoparticles apart. Included in the invention are alignment enhancement technologies such as heating, vibration, electromagnetic, particle bombardment and chemical means. The present invention recognizes that aligned and ordered nanotubes, nanowires and nanoparticles in a filament will increase the conductivity of the filament and enable the fabrication of electric conductors, wires and circuit components. Such breakthroughs in strength and conductivity of filaments of nanotubes, nanowires and/or nanoparticles will revolutionize life on Earth.
Abstract:
The present disclosure relates to a process for synthesis of barium bismuth sulfide nanofibers, having equivalent shielding capacity as lead. The present disclosure also relates to a radiation shielding articles and cosmeceuticals.