Abstract:
The present invention relates a mechanical differential actuator for interacting with a mechanical load. The mechanical differential actuator comprises first and second semi-active sub-actuators, a velocity source and first and second mechanical differentials having three interaction ports each. The first mechanical differential includes a first interaction port coupled to the velocity source, a second interaction port and a third interaction port coupled to the first semi-active sub-actuator. The second mechanical differential includes a first interaction port coupled to the velocity source, a second interaction port and a third interaction port coupled to the second semi-active sub-actuator. Finally, the second interaction ports of the first and second mechanical differentials are coupled together to form an output which is configured so as to be coupled to the load.
Abstract:
In the basic embodiment, the transmission includes (a) a minimal-orbiter gear complex having only a control gear and an output gear interconnected by the gearing portions of at least one cluster gear supported by an orbiting web responsive to an input drive provided by a primary engine and (b) a single, infinitely-variable rotary control device providing resistance torque to counter engine torque to slow and stop the control gear of the orbital complex. The rotary control device, which may be a hydraulic jack or an electrically braked magnetic wheel, provides no propelling motion but rather only provides a resistive torque. In a preferred embodiment for automotive use, the engine torque is split at all times between two mechanical paths. One path drives the web of a minimal orbiter gear set, and the other drives the sun gear of a single, standard planetary gear set.
Abstract:
В качестве регулятора оборотов двигателя транспортного средства используют устройство, содержащее планетарный дифференциал с ведущим водилом (2) и двумя различными по диаметру центральными зубчатыми колесами (5, 12). Центральное зубчатое колесо (5) при вращении водила (2) по отношению к нему вращается в обратную сторону и передает энергию двигателя на выходной вал (6) через редуктор, изменяющий направление вращения. Центральное зубчатое колесо (12) вращается в ту же сторону, что и водило (2) и передает вращение на выходной вал (6) через фрикционную муфту (13). Регулирующий исполнительный механизм, управляемым сигналом, являющимся функцией оборотов вала двигателя, приводит к изменению соотношения передачи вращения через шестерни дифференциала и вращения всего механизма и, соответственно, к разгону или торможению выходного вала (6) с изменением передаточного отношения от максимальной величины до единицы.
Abstract:
A magnetorheological (MR) fluid coupling for vectoring torque with respect to a shaft capable of rotary motion is disclosed. The coupling includes a stator, a rotor having a rotational degree of freedom with respect to the stator and configured for physical communication with the shaft, and a magnetic field generator. The stator and rotor define an annular space therebetween and are coupled via a MR fluid disposed within the annular space. The magnetic field generator is in field communication with the MR fluid and is disposed to produce a substantially radially directed magnetic field across the annular space. The rotor is rotationally responsive to the application of a magnetic field at the MR fluid.
Abstract:
A variable transmission system (100) includes an input gear (102) that is adapted to engage with a flywheel of a vehicle. The input gear includes a sun gear (112) and plural planet gears (110). The input gear is coupled to an output shaft (108) through the sun gear. The output shaft is selectively coupled to a vehicle differential by a selector section (106). The gear ratio determined by the input gear is controlled by a variable control unit (104). The variable control unit determines whether and the extent the planet gears revolve around the sun gear and rotate on their own axes. The variable control unit operates as a function of engine speed.
Abstract:
An automatic transmission includes an input first rotating member (3), an output second rotating member (6) coaxial with the first rotating member (3), a third rotating member (8) coaxial with the first rotating member (3), and a rotation transmitting element (10) mounted on the third rotating member (8) to transmit rotation of the first rotating member (3) to the second rotating member (6) so that the second rotating member (6) is rotated at a predetermined reduction ratio exceeding rotation of the first rotating member (3) in a stopped state of the third rotating member (8) in a direction of rotation of the first rotating member (3). The reduction ratio is increased as a difference between numbers of revolution of the first and third rotating members (3, 8) is rendered larger.
Abstract:
A variable ratio gearbox including a centre shaft (1), cage (6) and outer body (5). A first member (3) is between the centre shaft (1) and the cage (6) for communicating movement therebetween, and a second member (7) is between the cage (6) and the outer body (5) for communicating movement therebetween. Upon rotation of one said component (shaft, cage or outer body) at least one of the remaining components is caused to rotate. The output from one component (shaft, cage or outer body) is such that variation of a load between zero and a maximum value corresponds to variation of the ratio of the angular velocity between the other two or more components. This variation is achieved by a second input or brake (10).
Abstract:
A speed change gear of the invention is provided with two planetary gear sets, each of which has a sun gear (11G) on the inner side and planetary gears (21, 22, 23) and ring gears (15, 18) on the outer side. An input shaft (11) is connected to the sun gear (11G) in the first planetary gear set. Both of planetary gear carriers (13, 17) are coupled together by planetary gear shafts (20, 24) so that the planetary carriers are rotated at the same speed, and the planetary gears are constructed so that they rotate freely on their own axes and revolve together with the planetary gear carriers around the planetary gear shafts. An output shaft (14) is coupled integrally with the ring gear (15) in the second planetary gear set, and the planetary gear (21) meshed with the sun gear (11G) on the input shaft is meshed with the planetary gear (22) in the second planetary gear set, said gear (22) being meshed with the ring gear (15) on the output shaft, so that the transmission of power is effected. The rotation of the ring gear (18) in the first planetary gear set is controlled by applying rotational resistance to said gear, thus varying the gear ratio. Since a high-speed unit (3) is provided to increase the number of revolutions per minute of the input shaft, the output shaft can be rotated more speedily than the input shaft by transmitting the rotational force of the high-speed unit to the planetary gears in the second planetary gear set.
Abstract:
The continuous gear shifting device comprises an input shaft (1), an output shaft (13), two kinematic transmission systems each comprising at least one transmission member (5, 7) rotatingly mounted about an axis, the systems being coupled to each other and each being coupled by one end (2, 3) to the input shaft (1). The coupling is provided by means of at least one rotary transmission member (10) rotating about an axis (11) mounted on an output arm (12) which is rotatingly integral, at least in one direction, with the output shaft (13). Application to continuous gear shifting boxes and preferably to automatic gear-boxes.
Abstract:
Es wird eine Getriebeanordnung mit zwei gleichen, je drei Wellen (3, 4, 5) aufweisenden Umlaufrädergetrieben (1, 2) zwischen einem Getriebeeingang (6) und einem Getriebeausgang (7) beschrieben, wobei von den drei Paaren einander entsprechender Wellen (3, 4, 5) der beiden Umlaufrädergetriebe (1, 2) ein Wellenpaar (3) dem Getriebeeingang (6) und dem Getriebeausgang (7) zugeordnet ist, während die Wellen (4, 5) der beiden übrigen Wellenpaare in einem starren Übersetzungsverhältnis antriebsverbunden sind, und wobei zumindest eines der Wellen- paare der starr miteinander antriebsverbundenen Wellen (4, 5) an eine Einrichtung (10) zur Drehmomentbeaufschlagung angeschlossen ist, die das angeschlossene Wellenpaar (4, 5) mit einem von der Welle (12, 22) des Getriebeausgangs (7) oder des Getriebeeingangs (6) abgeleiteten Beschleunigungsmoment beaufschlagt, dadurch gekennzeichnet, dass die starr miteinander antriebsverbundenen Wellen (4, 5) der beiden Wellenpaare ein unterschiedliches Übersetzungsverhältnis aufweisen.